Series I, exercise 1 A pawn starts at the point $(0,0)$ on the plane and makes a sequence of jumps. If the position of the pawn is (x, y), where $x, y \in \mathbb{Z}$, then after a jump its position is of the form $(x+n, y+k)$, where $n, k \in \mathbb{Z}$ and $|n|+|k|=5$. What is the smallest number of jumps needed for the pawn to reach the point $(2024,2024)$?

Solution Each hop can be described by a displacement vector $\langle p, q\rangle$ with possible vectors being (up to permutation of coordinates and sign changes) $<0,5>,<1,4>,<$ $2,3>$. The total distance the pawn needs to cover is 4048 with it covering the distance equal to 5 in each step. Because of that the minimal number of jumps cannot be lower that $\left\lfloor\frac{8048}{5}\right\rfloor=809$. Note that after 808 jumps the pawn can reach the position $(2020,2020)$. Then the remaining distance to cover is 8 meaning the pawn must make at least two more jumps. The jumps in question are (for example) $(4,-1)$ and $(0,5)$ bringing the minimal number of jumps to 810 .

Series I, exercise 2 Prove that for any prime number p there exist at most 2 natural numbers n for which $p 2^{n}+1$ is a square of a natural number.

Solution Suppose that the number $p 2^{n}+1$ is a square of some natural number. Since $p 2^{n}+1$ is odd, then $p 2^{n}+1=(2 k+1)^{2}$ for some $k \in \mathbb{N}$. Hence

$$
p 2^{n}=4 k^{2}+4 k .
$$

If $p=2$, then we have

$$
2^{n+1}=4 k(k+1),
$$

so

$$
2^{n-1}=k(k+1) .
$$

Therefore, both k and $k+1$ must be powers of 2 which is possible only if $k=1$. Then

$$
2^{n-1}=2,
$$

so $n=2$ is the only solution.
Now, assume that $p>2$. Then

$$
p 2^{n-2}=k(k+1) .
$$

Of course, p and 2^{n-2} are coprime, and also k and $k+1$ are coprime, so either $k=p$ and $k+1=2^{n-2}$ or $k=2^{n-2}$ and $k+1=p$. Thus, either $p+1=2^{n-2}$ or $2^{n-2}+1=p$, and in consequence $2^{n-2}=p+1$ or $2^{n-2}=p-1$. Finally, for any prime number p there can be only 2 natural numbers n such that $p 2^{n}+1$ is a square of a natural number.

Series I, exercise 3 A square matrix A is called magic if sums of elements in each row, in each column and in both diagonals are equal. Prove that

$$
A=\left[\begin{array}{rrr}
s+x & s-x+y & s-y \\
s-x-y & s & s+x+y \\
s+y & s+x-y & s-x
\end{array}\right]
$$

for some $s, x, y \in \mathbb{R}$. Show that if A is an invertible magic matrix, then A^{-1} is also magic. Moreover, show that A is invertible if and only if $x^{2} \neq y^{2}$.

Solution Let

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

be a magic matrix. From this we get

$$
\begin{aligned}
& a_{22}=3 s-a_{11}-a_{33} \\
& a_{22}=3 s-a_{13}-a_{31} \\
& a_{22}=3 s-a_{12}-a_{32} \\
& a_{22}=3 s-a_{21}-a_{23}
\end{aligned}
$$

Hence $a_{22}=s$. From the above we obtain $a_{11}=s+x$ and $a_{33}=s-x$. Next we get $a_{31}=s+y$ and $a_{13}=s-y$. From $a_{11}+a_{12}+a_{13}=3 s$ we get $a_{12}=s-x+y$ and $a_{11}+a_{21}+a_{31}=3 s$ we obtain $a_{21}=s-x-y$. From the above we get $a_{32}=s+x-y$ and $a_{23}=s+x+y$. We have matrix A in the form

$$
A=\left[\begin{array}{rrr}
s+x & s-x+y & s-y \\
s-x-y & s & s+x+y \\
s+y & s+x-y & s-x
\end{array}\right]
$$

The determinant of the matrix A is $9 s\left(x^{2}-y^{2}\right)$, so if $x^{2}=y^{2}$ then the matrix A is singular; otherwise is regular.

Now suppose that A is regular. Then

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{x^{2}-y^{2}-3 s y}{9 s\left(x^{2}-y^{2}\right)} & \frac{x+y-3 s}{9 s(x+y)} & \frac{x^{2}-y^{2}+3 s x}{9 s\left(x^{2}-y^{2}\right)} \\
\frac{x-y+3 s}{9 s(x-y)} & \frac{1}{9 s} & \frac{x-y-3 s}{9 s(x-y)} \\
\frac{x^{2}-y^{2}-3 s x}{9 s\left(x^{2}-y^{2}\right)} & \frac{x+y+3 s}{9 s(x+y)} & \frac{x^{2}-y^{2}+3 s y}{9 s\left(x^{2}-y^{2}\right)}
\end{array}\right]
$$

and it is easy to check that this matrix is also magic.

