
Series I, exercise 1 A pawn starts at the point (0, 0) on the plane and makes a sequence

of jumps. If the position of the pawn is (x, y), where x, y ∈ Z, then after a jump its position

is of the form (x+ n, y + k), where n, k ∈ Z and |n|+ |k| = 5. What is the smallest number

of jumps needed for the pawn to reach the point (2024, 2024)?

Solution Each hop can be described by a displacement vector < p, q > with possible

vectors being (up to permutation of coordinates and sign changes) < 0, 5 >,< 1, 4 >,<

2, 3 >. The total distance the pawn needs to cover is 4048 with it covering the distance

equal to 5 in each step. Because of that the minimal number of jumps cannot be lower that

b8048
5
c = 809. Note that after 808 jumps the pawn can reach the position (2020, 2020). Then

the remaining distance to cover is 8 meaning the pawn must make at least two more jumps.

The jumps in question are (for example) (4,−1) and (0, 5) bringing the minimal number of

jumps to 810.
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Series I, exercise 2 Prove that for any prime number p there exist at most 2 natural

numbers n for which p2n + 1 is a square of a natural number.

Solution Suppose that the number p2n + 1 is a square of some natural number. Since

p2n + 1 is odd, then p2n + 1 = (2k + 1)2 for some k ∈ N. Hence

p2n = 4k2 + 4k.

If p = 2, then we have

2n+1 = 4k(k + 1),

so

2n−1 = k(k + 1).

Therefore, both k and k + 1 must be powers of 2 which is possible only if k = 1. Then

2n−1 = 2,

so n = 2 is the only solution.

Now, assume that p > 2. Then

p2n−2 = k(k + 1).

Of course, p and 2n−2 are coprime, and also k and k + 1 are coprime, so either k = p and

k + 1 = 2n−2 or k = 2n−2 and k + 1 = p. Thus, either p + 1 = 2n−2 or 2n−2 + 1 = p, and in

consequence 2n−2 = p+1 or 2n−2 = p− 1. Finally, for any prime number p there can be only

2 natural numbers n such that p2n + 1 is a square of a natural number.
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Series I, exercise 3 A square matrix A is called magic if sums of elements in each row,

in each column and in both diagonals are equal. Prove that

A =


s+ x s− x+ y s− y

s− x− y s s+ x+ y

s+ y s+ x− y s− x


for some s, x, y ∈ R. Show that if A is an invertible magic matrix, then A−1 is also magic.

Moreover, show that A is invertible if and only if x2 6= y2.

Solution Let

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


be a magic matrix. From this we get

a22 = 3s− a11 − a33

a22 = 3s− a13 − a31

a22 = 3s− a12 − a32

a22 = 3s− a21 − a23

Hence a22 = s. From the above we obtain a11 = s + x and a33 = s − x. Next we get

a31 = s + y and a13 = s − y. From a11 + a12 + a13 = 3s we get a12 = s − x + y and

a11 + a21 + a31 = 3s we obtain a21 = s− x− y. From the above we get a32 = s+ x− y and

a23 = s+ x+ y. We have matrix A in the form

A =


s+ x s− x+ y s− y

s− x− y s s+ x+ y

s+ y s+ x− y s− x


The determinant of the matrix A is 9s(x2 − y2), so if x2 = y2 then the matrix A is

singular; otherwise is regular.

Now suppose that A is regular. Then

A−1 =


x2 − y2 − 3sy

9s(x2 − y2)

x+ y − 3s

9s(x+ y)

x2 − y2 + 3sx

9s(x2 − y2)
x− y + 3s

9s(x− y)

1

9s

x− y − 3s

9s(x− y)
x2 − y2 − 3sx

9s(x2 − y2)

x+ y + 3s

9s(x+ y)

x2 − y2 + 3sy

9s(x2 − y2)


and it is easy to check that this matrix is also magic.
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