Recent results in conformal foliation theory

Maciej Czarnecki

Uniwersytet Łódzki, Łódź, Poland

Talk at Πανεπιστήμιο Ιωαννίνων
29 Σεπτεμβρίου 2017
Plan of the talk

1. History of foliations with geometrical leaves
2. Conformal tools
3. Canal foliations
4. Umbilical foliations
Plan of the talk

1. History of foliations with geometrical leaves
2. Conformal tools
3. Canal foliations
4. Umbilical foliations
Plan of the talk

1. History of foliations with geometrical leaves
2. Conformal tools
3. Canal foliations
4. Umbilical foliations
Plan of the talk

1. History of foliations with geometrical leaves
2. Conformal tools
3. Canal foliations
4. Umbilical foliations
Plan of the talk

1. History of foliations with geometrical leaves
2. Conformal tools
3. Canal foliations
4. Umbilical foliations
A C^r codimension q **foliation** of an n–dimensional manifold M is a decomposition of M into it $p = (n - q)$–dimensional submanifolds (leaves) looking locally as product $\mathbb{R}^p \times \mathbb{R}^q$ provided that change of such ”product” maps is C^r.

Generally in foliation theory we study foliations on **compact** manifolds but leaves are not necessary compact.

One of the first known foliations is the **Reeb foliation** of S^3 containing torus and planes spiralling on this torus from both sides.
A C^r codimension q foliation of an n–dimensional manifold M is a decomposition of M into it $p = (n - q)$–dimensional submanifolds (leaves) looking locally as product $\mathbb{R}^p \times \mathbb{R}^q$ provided that change of such ”product” maps is C^r.

Generally in foliation theory we study foliations on compact manifolds but leaves are not necessary compact.

One of the first known foliations is the Reeb foliation of S^3 containing torus and planes spiralling on this torus from both sides.
Reeb foliation

Figure: Reeb component inside torus
Totally geodesic and totally umbilical

Definition

A submanifold L of a Riemannian manifold M is called **totally geodesic** if at any point p its shape operator A_p vanishes. If at any $p \in L$ the shape operator is a homothety i.e. $A_p = \lambda(p) I_d$ then L is **totally umbilical**.

We say that a foliation is **totally geodesic** (resp. **totally umbilical**) if all its leaves have this property.
Non–existence of totally geodesic foliations

Theorem (Brito, Ghys, Walczak, Zeghib 1981–97)

There is no C^r codimension q totally geodesic codimension q foliation on a compact hyperbolic n–manifold for any r, q and n.

- Totally geodesic foliations on \mathbb{R}^n exist (parallel hyperplanes) and they generate those on tori.
- S^n does not admit totally geodesic foliations of codimension 1 of purely topological reasons.
Non–existence of totally geodesic foliations

Theorem (Brito, Ghys, Walczak, Zeghib 1981–97)

There is no C^r codimension q totally geodesic codimension q foliation on a compact hyperbolic n–manifold for any r, q and n.

- Totally geodesic foliations on \mathbb{R}^n exist (parallel hyperplanes) and they generate those on tori.
- S^n does not admit totally geodesic foliations of codimension 1 of purely topological reasons.

Maciej Czarnecki

Recent results in conformal foliation theory
Non–existence of totally geodesic foliations

Theorem (Brito, Ghys, Walczak, Zeghib 1981–97)

There is no C^r codimension q totally geodesic codimension q foliation on a compact hyperbolic n–manifold for any r, q and n.

- Totally geodesic foliations on \mathbb{R}^n exist (parallel hyperplanes) and they generate those on tori.
- S^n does not admit totally geodesic foliations of codimension 1 of purely topological reasons.
Non–existence of geometrically defined foliations

A compact hyperbolic n–manifold does not admit a foliation which is

- **Riemannian**: Walschap 1998
 Riemannian = leaves are locally equidistant

- **quasi–isometric**: Fenley 1992 for $n = 3$, $q = 1$ quasi–isometric
 = inclusion of leaves in the universal cover are quasi–isometric embedding i.e.

 $$\frac{1}{\lambda}d(x, x') - \epsilon \leq d(f(x), f(x')) \leq \lambda d(x, x') + \epsilon$$

 with λ, ϵ uniformly bounded

- **totally umbilical**: Langevin–Walczak 2008 for $q = 1$.

Maciej Czarnecki

Recent results in conformal foliation theory
Non–existence of geometrically defined foliations

A compact hyperbolic n–manifold does not admit a foliation which is

- **Riemannian**: Walschap 1998
 Riemannian = leaves are locally equidistant

- **quasi–isometric**: Fenley 1992 for $n = 3$, $q = 1$ quasi–isometric
 = inclusion of leaves in the universal cover are quasi–isometric embedding i.e.
 \[
 \frac{1}{\lambda} d(x, x') - \varepsilon \leq d(f(x), f(x')) \leq \lambda d(x, x') + \varepsilon
 \]
 with λ, ε uniformly bounded

- **totally umbilical**: Langevin–Walczak 2008 for $q = 1$.

Maciej Czarnecki
Recent results in conformal foliation theory
Non-existence of geometrically defined foliations

A compact hyperbolic n–manifold does not admit a foliation which is

- **Riemannian**: Walschap 1998
 Riemannian = leaves are locally equidistant

- **quasi–isometric**: Fenley 1992 for $n = 3, q = 1$ quasi–isometric
 = inclusion of leaves in the universal cover are quasi–isometric embedding i.e.

\[
\frac{1}{\lambda} d(x, x') - \varepsilon \leq d(f(x), f(x')) \leq \lambda d(x, x') + \varepsilon
\]

with λ, ε uniformly bounded

- **totally umbilical**: Langevin–Walczak 2008 for $q = 1$.

Non–existence of geometrically defined foliations

A compact hyperbolic n–manifold does not admit a foliation which is

- **Riemannian**: Walschap 1998
 Riemannian = leaves are locally equidistant

- **quasi–isometric**: Fenley 1992 for $n = 3$, $q = 1$ quasi–isometric
 = inclusion of leaves in the universal cover are quasi–isometric embedding i.e.

 $$\frac{1}{\lambda} d(x, x') - \varepsilon \leq d(f(x), f(x')) \leq \lambda d(x, x') + \varepsilon$$

 with λ, ε uniformly bounded

- **totally umbilical**: Langevin–Walczak 2008 for $q = 1$.

Recent results in conformal foliation theory
Conformal invariants for surface

For a surface $S \subset \mathbb{R}^3 \subset S^3$ with non-zero Gaussian curvature and free of umbilics i.e. its principal curvatures k_1 and k_2 are distinct everywhere we denote by X_1 and X_2 principal directions, and

$$\mu = \frac{k_1 - k_2}{2}.$$

Then define

- **principal conformal curvatures**

 $$\theta_1 = \frac{1}{\mu^2} X_1(k_1), \quad \theta_2 = \frac{1}{\mu^2} X_2(k_2)$$

- **principal conformal vector fields**

 $$\xi_1 = \frac{1}{k_1} X_1, \quad \xi_2 = \frac{1}{k_2} X_2$$
Conformal invariants for surface

For a surface $S \subset \mathbb{R}^3 \subset S^3$ with non-zero Gaussian curvature and free of umbilics i.e. its principal curvatures k_1 and k_2 are distinct everywhere we denote by X_1 and X_2 principal directions, and

$$\mu = \frac{k_1 - k_2}{2}.$$

Then define

- **principal conformal curvatures**

$$\theta_1 = \frac{1}{\mu^2} X_1(k_1), \quad \theta_2 = \frac{1}{\mu^2} X_2(k_2)$$

- **principal conformal vector fields**

$$\xi_1 = \frac{1}{k_1} X_1, \quad \xi_2 = \frac{1}{k_2} X_2$$
Conformal invariants for surface

For a surface $S \subset \mathbb{R}^3 \subset S^3$ with non-zero Gaussian curvature and free of umbilics i.e. its principal curvatures k_1 and k_2 are distinct everywhere we denote by X_1 and X_2 principal directions, and

$$\mu = \frac{k_1 - k_2}{2}.$$

Then define

- **principal conformal curvatures**

 $$\theta_1 = \frac{1}{\mu^2} X_1(k_1), \quad \theta_2 = \frac{1}{\mu^2} X_2(k_2)$$

- **principal conformal vector fields**

 $$\xi_1 = \frac{1}{k_1} X_1, \quad \xi_2 = \frac{1}{k_2} X_2$$
Conformal invariants for surface

and finally

- the Bryant invariant

$$\psi = \frac{1}{\mu^3} (\triangle H + 2\mu^2 H) + \frac{1}{2} (\xi_1^2 - \xi_2^2 + \xi_1(\theta_1) + \xi_2(\theta_2))$$

Here H is the mean curvature of S.

Quantities $\theta_1, \theta_2, \xi_1, \xi_2, \psi$ define a surface up to a conformal transformation from the group $\text{M"{o}b}_3 \simeq O^+(3,1)$ generated by inversions in 2–spheres.
and finally

- **the Bryant invariant**

\[
\Psi = \frac{1}{\mu^3} (\triangle H + 2\mu^2 H) + \frac{1}{2} (\xi_1^2 - \xi_2^2 + \xi_1(\theta_1) + \xi_2(\theta_2))
\]

Here H is the mean curvature of S.

Quantities $\theta_1, \theta_2, \xi_1, \xi_2, \Psi$ define a surface up to a conformal transformation from the group $\text{M"ob}_3 \simeq O^+(3,1)$ generated by inversions in 2–spheres.
Conformal invariants for surface

and finally

- the Bryant invariant

\[\Psi = \frac{1}{\mu^3} (\triangle H + 2\mu^2 H) + \frac{1}{2} (\xi_1^2 - \xi_2^2 + \xi_1(\theta_1) + \xi_2(\theta_2)) \]

Here \(H \) is the mean curvature of \(S \).

Quantities \(\theta_1, \theta_2, \xi_1, \xi_2, \Psi \) define a surface up to a conformal transformation from the group \(\text{M"ob}_3 \simeq O^+(3, 1) \) generated by inversions in 2–spheres.
Examples of conformal surfaces

- **canal surface**: $\theta_1 = 0$
 This is an envelope of 1-parameter family of 2-spheres which intersect each other if they are close enough. Thus a canal surface is made of a family of **characteristic circles**.

- **Dupin cyclide**: $\theta_1 = \theta_2 = 0$
 On a Dupin cyclide there are two families of characteristic circles.

 The Bryant invariant distinct Dupin cyclides: $|\Psi| > 2$ is for cones, $|\Psi| = 2$ for cylinders, and $|\Psi| < 2$ is tori.
Examples of conformal surfaces

- **canal surface:** $\theta_1 = 0$
 This is an envelope of 1-parameter family of 2-spheres which intersect each other if they are close enough. Thus a canal surface is made of a family of **characteristic circles**.

- **Dupin cyclide:** $\theta_1 = \theta_2 = 0$
 On a Dupin cyclide there are two families of characteristic circles.

 The Bryant invariant distinct Dupin cyclides: $|\Psi| > 2$ is for cones, $|\Psi| = 2$ for cylinders, and $|\Psi| < 2$ is tori.
Examples of conformal surfaces

- **canal surface**: $\theta_1 = 0$
 This is an envelope of 1-parameter family of 2-spheres which intersect each other if they are close enough. Thus a canal surface is made of a family of **characteristic circles**.

- **Dupin cyclide**: $\theta_1 = \theta_2 = 0$
 On a Dupin cyclide there are two families of characteristic circles.

The Bryant invariant distinct Dupin cyclides: $|\Psi| > 2$ is for cones, $|\Psi| = 2$ for cylinders, and $|\Psi| < 2$ is tori.
Canal surface

Figure: Canal surface with its characteristic circles
Dupin cyclides

Figure: Three types of Dupin cyclides
A compact 3–manifold with constant non-zero sectional curvature does not admit a foliation which is

- **Dupin**: Langevin–Walczak 2008
- **of constant conformal invariants (CCI)**: Bartoszek–Walczak 2008

CCI = principal conformal curvatures and the Bryant invariant are constant on every leaf
A compact 3–manifold with constant non-zero sectional curvature does not admit a foliation which is

- **Dupin**: Langevin–Walczak 2008
- of constant conformal invariants (CCI): Bartoszek–Walczak 2008

CCI = principal conformal curvatures and the Bryant invariant are constant on every leaf
A compact 3–manifold with constant non-zero sectional curvature does not admit a foliation which is

- **Dupin**: Langevin–Walczak 2008
- **of constant conformal invariants (CCI)**: Bartoszek–Walczak 2008

 CCI = principal conformal curvatures and the Bryant invariant are constant on every leaf
Theorem (Langevin–Walczak 2010)

Any foliation of the sphere S^3 by canal surfaces is Reeb foliation with toral leaf being a Dupin cyclide or is obtained from such Reeb foliation inserting zone $T^2 \times [0, 1]$ consisting of toral or cylindrical leaves.

The zone contains

- finite number of essential zones where cylindrical leaves accumulate on two boundary tori inducing different orientations,
- finite or countable number of spiralling components where cylindrical leaves accumulate on two boundary tori inducing the same orientation.
Theorem (Langevin–Walczak 2010)

Any foliation of the sphere S^3 by canal surfaces is Reeb foliation with toral leaf being a Dupin cyclide or is obtained from such Reeb foliation inserting zone $T^2 \times [0, 1]$ consisting of toral or cylindrical leaves.

The zone contains

- finite number of essential zones where cylindrical leaves accumulate on two boundary tori inducing different orientations,
- finite or countable number of spiralling components where cylindrical leaves accumulate on two boundary tori inducing the same orientation.
Figure: Two types of essential zones
Spiralling component

Figure: Two types of spiralling component
A gridded structure on a 3–manifold is a continuous orientable foliation or sub-foliation by circles possibly with isolated singularities.
If a gridded structure is piecewise continuous on compact saturated submanifolds with sudden discontinuities along finitely many compact leaves which will be analogues of Dupin cyclides then we call it a topological canal foliations.

Geometric canal foliations are special cases of topological canals.
Griddled structures

Figure: Canonical griddled structures
Manifolds admitting topological canal foliations

Theorem (Hector–Langevin–Walczak 2016 preprint)

A closed (i.e. compact without boundary) 3–manifold M admits a topological canal foliation iff it is one of the following

1. $M = S^3$
2. $M = T^3$
3. $M = S^2 \times S^1$
4. M is a lens space
5. M is S^1 bundle over T^2.

Lens space = two glued solid along closed geodesics

Corollary

There is no canal foliation on any hyperbolic 3–manifold.
Manifolds admitting topological canal foliations

Theorem (Hector–Langevin–Walczak 2016 preprint)

A closed (i.e. compact without boundary) 3–manifold M admits a topological canal foliation iff it is one of the following:

1. $M = S^3$
2. $M = T^3$
3. $M = S^2 \times S^1$
4. M is a lens space
5. M is S^1 bundle over T^2.

Lens space = two glued solid along closed geodesics

Corollary

There is no canal foliation on any hyperbolic 3–manifold.
On compact hyperbolic 3–manifold there is no codimension 1 foliations which are

- totally geodesic
- totally umbilical
- Riemannian
- Dupin
- CCI
- canal
- quasi–isometric

Maybe some combination of canal and umbilical is a promise or only noncompact case remains?
Any geometry?

On compact hyperbolic 3–manifold there is no codimension 1 foliations which are

- totally geodesic
- totally umbilical
- Riemannian
- Dupin
- CCI
- canal
- quasi–isometric

Maybe some combination of canal and umbilical is a promise

or only noncompact case remains?
On compact hyperbolic 3–manifold there is no codimension 1 foliations which are
- totally geodesic
- totally umbilical
- Riemannian
- Dupin
- CCI
- canal
- quasi–isometric

Maybe some combination of canal and umbilical is a promise or only noncompact case remains?
Theorem (Ferus 1973)

Any codimension 1 totally geodesic C^2 foliation of \mathbb{H}^n is orthogonal to a curve $\mathbb{R} \to \mathbb{H}^n$ of geodesic curvature ≤ 1 and any such foliation appears in the above way.
Figure: Totally geodesic foliation of \mathbb{H}^n which is orthogonal to a geodesic.
In \mathbb{R}^{n+2} consider Lorentz form

$$\langle x|y \rangle = -x_0y_0 + x_1y_1 + \ldots + x_{n+1}y_{n+1}$$

and sets $\mathcal{L}: \langle x|x \rangle = 0$ — light cone

$\Lambda^{n+1}: \langle x|x \rangle = 1$ — de Sitter space

$S^n_\infty: \langle x|x \rangle = 0$ and $x_0 = 1$ — sphere at infinity
De Sitter space

Figure: Light cone and de Sitter space
De Sitter space Λ^{n+1} is in one-to-one correspondence with the set of all oriented $(n-1)$–spheres on S^n.

For $\sigma \in \Lambda^{n+1}$ its corresponding sphere is

$$\Sigma = \sigma^\perp \cap S^n_\infty$$

Conversely, if Σ is $(n-1)$–dimensional sphere in S^n of geodesic curvature k_g, $m \in \Sigma$ and n is unit normal to Σ with respect to S^n then

$$\sigma = k_g m + n$$
De Sitter space vs. spheres

De Sitter space Λ^{n+1} is in one-to-one correspondence with the set of all oriented $(n-1)$–spheres on S^n.

For $\sigma \in \Lambda^{n+1}$ its corresponding sphere is

$$\Sigma = \sigma^\perp \cap S^n$$

Conversely, if Σ is $(n-1)$–dimensional sphere in S^n of geodesic curvature k_g, $m \in \Sigma$ and n is unit normal to Σ with respect to S^n then

$$\sigma = k_g m + n$$
De Sitter space Λ^{n+1} is in one-to-one correspondence with the set of all oriented $(n - 1)$–spheres on S^n.

For $\sigma \in \Lambda^{n+1}$ its corresponding sphere is

$$\Sigma = \sigma^\perp \cap S^n_\infty$$

Conversely, if Σ is $(n - 1)$–dimensional sphere in S^n of geodesic curvature k_g, $m \in \Sigma$ and n is unit normal to Σ with respect to S^n then

$$\sigma = k_g m + n$$
De Sitter space vs. spheres

Figure: Spheres in de Sitter space
In the space Λ^4 of 2-spheres

- canal surfaces are space-like curves
- Dupin cyclides are sections by space-like affine 2-planes
In \mathbb{H}^n they are three candidates for leaves of totally umbilical foliations:

- totally geodesic hypersurfaces isometric to \mathbb{H}^{n-1},
- hyperspheres (equidistant from totally geodesic) isometric to \mathbb{H}^{n-1} of constant curvature between -1 and 0,
- horospheres isometric to \mathbb{R}^{n-1}.

All of them are parts of $(n - 1)$-spheres so are visible in Λ^{n+1}. Thus totally a umbilical foliation of \mathbb{H}^n is there too.
In \mathbb{H}^n they are three candidates for leaves of totally umbilical foliations:

- totally geodesic hypersurfaces isometric to \mathbb{H}^{n-1},
- hyperspheres (equidistant from totally geodesic) isometric to \mathbb{H}^{n-1} of constant curvature between -1 and 0,
- horospheres isometric to \mathbb{R}^{n-1}.

All of them are parts of $(n - 1)$-spheres so are visible in Λ^{n+1}. Thus totally a umbilical foliation of \mathbb{H}^n is there too.
Theorem (Cz-Langevin 2013)

Any codimension 1 totally geodesic foliations of \mathbb{H}^n appears as an unbounded time-or-light–like curve in de Sitter space Λ^{n+1}. This curve is contained in its subspace $\Sigma^\perp \Lambda^n$ where Σ is the ball model of \mathbb{H}^n.
Pencils of spheres

For two given spheres depending on its intersection we have three types of pencils

- **Poncelet** if they disjoint
- **tangent** for tangent
- **intersecting** if they intersect

If the spheres intersect then we attach to them one intersecting pencil and the family of tangent pencils.
One pencil
Two pencils

Recent results in conformal foliation theory
Three pencils
Three pencils with their vectors

Maciej Czarnecki

Recent results in conformal foliation theory
Shadok cone

Definition

Shadok cone at $\sigma \in \Lambda^{n+1}$ such that $|\langle \sigma | \sigma_{\infty} \rangle| \leq 1$ is the set $Sh_\sigma \subset T_\sigma(\Lambda^{n+1})$ which is the union of local time cone and convex hull of vector ν tangent to the sharing boundary pencil and light vectors orthogonal to ν.
Shadok cone

Recent results in conformal foliation theory
Conformal classification of totally umbilical foliations in hyperbolic space

Theorem (Cz–Langevin, still in progress)

Every totally umbilical foliation of \mathbb{H}^n modelled on a oriented sphere $\Sigma_{\infty} \subset S^n$ is represented by a curve $\Gamma : \mathbb{R} \to \Lambda^{n+1}$ included in the band between $\sigma + \sigma \perp$ and $-\sigma + \sigma \perp$ and satisfying condition

$$\Gamma'(t) \in Sh_{\Gamma(t)}.$$