1. Totally geodesic foliations of the real hyperbolic space

Totally geodesic foliations of the real hyperbolic space \mathbb{H}^n in codimension 1 are well understood. Every complete totally geodesic codimension 1 submanifold of \mathbb{H}^n is an isometric copy of \mathbb{H}^{n-1}.

Classical geometric classification of foliations with such leaves is as follows

Theorem

> Every codimension 1 totally geodesic C^2 foliation of \mathbb{H}^n is orthogonal to a curve (defined on \mathbb{R}) of geodesic curvature ≤ 1.

Looking at the ideal boundary of leaves as well as the hyperbolic space the **boundary** classification could be provided.

Theorem

The set of codimension 1 totally geodesic C^1 foliations of \mathbb{H}^n (with horocycle foliations excluded) modulo action of the group $O(n-1) \times \mathbb{R} \times \mathbb{Z}_2$ is in one-to-one correspondence with the set of all $C^{\alpha,1}$ functions $z: [0, 1] \to S^{n-1}$ such that $|z'| \leq 1$ in some natural parametrization.

2. The complex hyperbolic space and the complex de Sitter space

Definition Consider the Hermitian form in $\mathbb{C}^{1,n}$ given by

$$\langle z \bar{w} \rangle = -z_0 \bar{w}_0 + z_1 \bar{w}_1 + \ldots + z_n \bar{w}_n.$$

The complex hyperbolic n-space CH^n is the (complex) projectivization of negative vectors in $\mathbb{C}^{1,n}$ with respect to $\langle \cdot, \cdot \rangle$ while the complex de Sitter space CA^n is the projectivization of positive vectors.

Proposition

Every totally geodesic submanifold of the complex hyperbolic space is totally complex or totally real. In particular, minimal (real) codimension of totally geodesic submanifold is 2 and every complete such a submanifold of CH^n is an isometric copy of CH^{n-1}.

In the hyperboloid model every totally geodesic hypersurface is represented by a time-like hyperplane in the Lorentz space $\mathbb{R}^{1,n} \setminus \{0\}$. Thus its Lorentz normal vector is a point in de Sitter space $Λ^n$ consisting of all unit space-like vectors in $\mathbb{R}^{1,n}$. Looking from the **conformal** viewpoint.

Real Theorem

Totally geodesic codimension 1 C^1 foliations of \mathbb{H}^n are in one-to-one correspondence with the set of unbounded curves $Γ: \mathbb{R} \to Λ^n$ satisfying the following condition

$$\langle Γ(\tau_1) | Γ(\tau_2) \rangle \geq 1 \text{ for all } \tau_1, \tau_2 \in \mathbb{R}.$$

In the class C^2 this condition means simply that the curve $Γ$ is time-or-light-like (and future oriented).

For more wide explanation see

and the bibliography therein.

3. Codimension 2 totally geodesic foliations of the complex hyperbolic space

Using conformal approach very similar to the real case we have

Complex Theorem

Totally geodesic codimension 2 foliations of $\mathbb{C}^{1,n}$ are in one-to-one correspondence with the set of unbounded curves $Γ: \mathbb{C} \to CA^n$ which are complex-time-or-light-like.

Although the normalized vector field orthogonal to such foliation is constant along each leaf it is not necessary integrable. Probably some weaker assumptions than holomorphicity guarantee this integrability.

Then we could formulate more geometrical condition

Corollary

If the field of vectors orthogonal to a codimension 2 totally geodesic foliation of $\mathbb{C}^{1,n}$ is integrable then this foliation is orthogonal to a 2–dimensional Hadamard manifold.

Problem

Apply this method to minimal codimension (equal 4) totally geodesic foliations of the quaternionic hyperbolic space.