Foliations with special geometric properties

Linnéuniversitetet, Växjö, Sweden

Maciej Czarnecki
Uniwersytet Łódzki, Łódź, Poland

April 17, 2013
Part 1

Manifolds, submanifolds and foliations
Definition 1. Let M be a topological Hausdorff space. We say that M is an m–dimensional **manifold** of class C^r if there is a family of open sets $\{U_\alpha\}$ covering M and a family of homeomorphisms (called **maps**) $\varphi_\alpha : U_\alpha \to V_\alpha$ with V_α open in \mathbb{R}^m such that for any α, β a map

$$\varphi_\beta \circ \varphi_\alpha^{-1} : \varphi_\alpha(U_\alpha \cap U_\beta) \to \varphi_\beta(U_\alpha \cap U_\beta)$$

is of class C^r.

Example 1. \mathbb{R}^n is an n–dimensional manifold.

$S^n = \{x \in \mathbb{R}^{n+1} : \|x\| = 1\}$ is an n–dimensional manifold. Two maps covering S^n are stereographic projection from the poles N and S.
Definition 2. A **tangent vector** to a manifold M at a point p is a linear real function v on the space of smooth functions in neighbourhoods of p on M which acts as derivative i.e.

$$v(f_1 \cdot f_2) = f_1(p)v(f_2) + f_2(p)v(f_1)$$

A collection of all jets of vectors tangent to M at p is its **tangent space** $T_p(M)$ — linear space of dimension m.

A **tangent bundle** TM is a vector bundle of tangent spaces over M. TM is a manifold of dimension $2m$.

Example 2. $T_p(S^n) = p^\perp$ is a hyperplane in \mathbb{R}^{n+1}.
Definition 3. A **vector field** on M is a section of the tangent bundle TM.

For two differentiable vector fields X, Y on M we define their **Lie bracket** as a vector field

$$[X,Y](f) = X(Yf) - Y(Xf)$$

for any function f on M.

Example 3. On S^n with n even there is no nonzero smooth (or continuous) vector fields.

In \mathbb{R}^n coordinate vector fields commute i.e. $\left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right] = 0$
Definition 4. We say that \(N \subset M \) is its \(n \)-dimensional submanifold, \(n \leq m \), if \(N \) is an image of \(n \)-dimensional manifold under homeomorphism which is immersive i.e. rank of the derivative is \(n \) at every point.

Example 4. \(S^n \) is an \(n \)-dimensional submanifold of \(\mathbb{R}^{n+1} \).

Whitney theorem states that any manifold \(M \) there is \(k \) such that \(M \) is a submanifold of \(\mathbb{R}^k \).
Definition 5. Let M be an m–manifold. A foliated chart of codimension q is a pair (U, φ), where U is open in M an φ is a diffeomorphism of U onto a product of $p = (m - q)$–dimensional neighbourhood B_τ and q–dimensional rectangular neighborhood B_{\triangleleft}. A plaque of this foliated chart is a set of form $\varphi^{-1}(B_\tau \times \{y\})$.

A foliation on M of class C^r $(r = 0, 1, \ldots, \infty, \omega)$ and codimension q is defined by C^r atlas consisting foliated charts such that the transition transformation $\varphi_\beta \circ \varphi_\alpha^{-1}$ maps horizontal levels in $\varphi_\alpha(U_\alpha)$ into horizontal levels in $\varphi_\beta(U_\beta)$ for any α, β.

Leaves of the foliation are connected unions of plaques.
Example 5. • Cartesian product $M \times S^1$ with leaves diffeomorphic to M.

• Submersion $f : M \to B$ with leaves which are connected components of nonempty level sets of f.

• Linear foliation of tori $T^2 = \mathbb{R}^2/\mathbb{Z}^2$; if the slope is rational leaves are diffeomorphic to S^1, if not — to \mathbb{R}.
Reeb foliation of S^3

1. Consider submersion $[-1, 1] \times \mathbb{R} \ni (x, y) \mapsto (x^2 - 1)e^y \in \mathbb{R}$ generating a foliation of the infinite strip. Rotate it around y–axis to obtain a foliation \mathcal{F}_0 of the solid closed cylinder $D^2 \times \mathbb{R}$ invariant under the group Γ of vertical translations of 2π multiplicities.

2. Interior of the solid tori $D^2 \times S^1$ is thus foliated via $\mathcal{F} = \mathcal{F}_0/\Gamma$ (Reeb component) by leaves diffeomorphic to \mathbb{R}^2 which accumulate on T^2.

3. $S^3 = \{x \mid x_1^2 + \ldots + x_4^2 = 1\}$ is a union of two solid tori with the common boundary $T^2 = \{x \mid x_1^2 + x_2^2 = \frac{1}{2}, x_3^2 + x_4^2 = \frac{1}{2}\}$. We foliate S^3 taking two copies of \mathcal{F}.
Theorem 6. (Frobenius) A k–dimensional plane distribution E on a manifold M is tangent to a foliation on M iff E is involutive i.e. for any $X, Y \in E$ we have $[X, Y] \in E$.

Theorem 7. (Denjoy) There is a C^1 foliation of tori T^2 which is not homeomorphic to any C^2 foliation of T^2.

Theorem 8. (Haefliger) There is no real analytic (i.e. C^ω) foliation of codimension 1 on a closed manifold with finite fundamental group.
Theorem 9. (Novikov) Any codimension 1 foliation of class C^2 on S^3 has a toral leaf with Reeb component inside it.

Theorem 10. (Thurston) On any closed manifold of Euler characteristic 0 there is a codimension 1 foliation. In particular any closed 3–manifold admits a codimension 1 foliation.

Theorem 11. (Cantwell, Conlon) Every surface (not necessary compact) is a leaf of some foliation on a compact manifold.
Definition 12. A **Riemannian metric** on a manifold M is a symmetric and positive $(0,2)$ tensor $\langle ., . \rangle$ i.e. a smooth assigning to any point $p \in M$ an inner product on $T_p(M)$.

On a Riemannian manifold $(M, \langle ., . \rangle)$ we introduce a **Levi–Civita connection** $\nabla : (X, Y) \mapsto \nabla_X Y$ on pairs of vector fields such that for any vector field Z on M

$$2\langle \nabla_X Y, Z \rangle = X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle$$

$$+ \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle$$

Example 12. On \mathbb{R}^n the standard inner product induces the co-variant derivative as Levi–Civita connection.
Definition 13. On a Riemannian manifold M a $(1,3)$ tensor R given by $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ is called a curvature tensor.

A sectional curvature of M at point p in direction of 2–dimensional plane $\subset T_p(M)$ generated by two orthonormal vectors u, v is a number $K(u,v) = \langle R(u,v)v, u \rangle$.

Example 13. The Euclidean space \mathbb{R}^n has constant sectional curvature 0 (i.e. at any point any sectional curvature is 0). The sphere S^n is of constant curvature 1.

If a Riemannian manifold has constant curvature κ then

$$R(X,Y)Z = \kappa (\langle Y, Z \rangle X - \langle X, Z \rangle Y)$$
Definition 14. A geodesic on a Riemannian manifold M is a function $c : I \to M$ on an interval $I \subset \mathbb{R}$ satisfying a condition $\nabla_{\dot{c}} \dot{c} = 0$, where \dot{c} denotes the tangent field to c.

A geodesic curvature of a curve γ parametrized by arc–length on M is a function $k_g(\gamma) = \left\| \nabla_{\dot{\gamma}} \dot{\gamma} \right\|$.

Example 14. In \mathbb{R}^n straight lines contain images of geodesics. On S^n these images are contained in great circles.
Definition 15. Let L be a submanifold of a Riemannian manifold M and ν denotes a unit normal vector field to L. A **shape operator** of the submanifold L at $p \in L$ with respect to $\nu(p)$ is a linear self–adjoint endomorphism $A : T_p(L) \to T_p(L)$ given by $A(u) = (\nabla_u \nu) ^\perp$.

Eigenvalues of A are called **principal curvatures** of L at p.

Definition 16. A submanifold is called **totally geodesic** if its shape operator vanishes at any point.

If a submanifold L has the shape operator proportional to the identity at any point then L is **totally umbilical**.
For further reading:

A. Candel, L. Conlon, *Foliations I, II*

T. Sakai, *Riemannian Geometry*