
Series I, exercise 1 Show that there are in�nitely many sequences of 23 consecutive

natural numbers such that sums of squares of all their terms are equal to squares of natural

numbers.

Solution We need to show that the equation

(x− 11)2 + (x− 10)2 + · · ·+ (x− 1)2 + x2 + (x+ 1)2 + . . . (x+ 11)2 = y2

has in�nitely many solutions in natural numbers, where x > 11. We have an equivalent

equation:

23x2 + x(−22− 20− · · ·+ 20 + 22) + (−11)2 + (−10)2 + · · ·+ 112 = y2

and further

23x2 + 2(12 + 22 + · · ·+ 112) = y2,

so

23x2 + 1012 = y2. (1)

Moreover, 1012 = 23 · 44, and hence 23|y2, so 23|y. Therefore, y = 23t for t ∈ N. Dividing

both sides of equation (1) by 23 we obtain

x2 + 44 = 23t2. (2)

We are looking for t such that f(t) := 23t2 − 44 is a square of some natural number. We

have f(1) = −21, f(2) = 48, f(3) = 163,

f(4) = 324 = 182.

So, for t1 = 4 (y1 = 23t1 = 92) and x1 = 18 we have one solution. Now, we would like to

�nd new pair (x2, t2) satisfying equation (2), which will depend, in some way, on x1 and t1.

More generally, we would like to �nd a sequence of pairs (xn, tn) satisfying equation (2) and

which can be described using (xn−1, tn−1). The most simple dependence is linear.

Assume that (x, t) satis�es equation (2). We are looking for a, b, c, d ∈ N such that pair

(x′, t′) satis�es equation (2), where x′ = ax+ bt and t′ = cx+ dt. So, we want to have

x′2 − 23t′2 = −44 = x2 − 23t2. (3)

Then we will be able to de�ne a sequence ((xn, tn)) of pairs satisfying (2). We have

x′2 − 23t′2 = (ax+ bt)2 − 23(cx+ dt)2 = a2x2 + 2abxt+ b2t2 − 23c2x2 − 46cdxt− 23d2t2
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= x2(a2 − 23c2) + xt(2ab− 46cd) + t2(b2 − 23d2).

So, equation (3) is equivalent to

x2(a2 − 23c2) + xt(2ab− 46cd) + t2(b2 − 23d2) = x2 − 23t2,

which is satis�ed if 
a2 − 23c2 = 1

2ab− 46cd = 0

b2 − 23d2 = −23.

(4)

The third equation is equivalent to

b2 = 23(d2 − 1) = 23(d− 1)(d+ 1).

Since 23(d− 1)(d+ 1) must be a square of a natural number, one of (d− 1) or (d+ 1) must

be divisible by 23. The least such d is 24. Then we have

b2 = 23 · 23 · 25 = 232 · 52 = 1052.

Hence b = 105 and d = 24 satisfy this equation. Now, putting these values to the second

equation in (4) we obtain

a = c · 23 · 24
105

= c · 24
5
.

This is satis�ed for c = 5 and a = 24. We check, if then the �rst equation in (4) is satis�ed.

We have

a2 − 23c2 = 242 − 23 · 25 = 576− 575 = 1.

So, we proved that if (x, t) satis�es the equation (4), then the pair (24x + 105t, 5x + 24t)

also satis�es it. Now, we can recursively de�ne a sequence ((xn, tn)) satisfying the equation

(3), putting x1 = 18, t1 = 4 and xn = 24xn−1 + 105tn−1, tn = 5xn−1 + 24tn−1 for n ≥ 2. Of

course, this sequence is increasing (with respect to both terms), and so it is in�nite. Thus,

we have the assertion.
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Series I, exercise 2 A group of 2n students wrote a test on which the possible scores

were 0, 1, . . . , 10. Each of these marks occurred at least once, and the average score was equal

to 7, 4. Prove that it is possible to divide the group into two subgroups of n students in such

a way that the average score for each group was also equal to 7, 4.

Solution Let S denote the sum of results obtained by the students. As S = (2N)(7.4) =

74n
5

we have that n is divisible by 5 and S is even, thus divisible by 10. The number of

students is also divisible by 10. Let us denote the scores of the students by s1, . . . , s10m

where s1 + · · ·+ s10m = 74m. If we can rearrange the scores such that s1 + · · ·+ s5m = 37m

we are done. If not we can rearrange them so S1 = s1 + · · · + s5m = 37m − δ and S2 =

s5m+1 + · · ·+ s10m = 37m+ δ with δ > 0 as small as possible. If there is a term in S1 that is

exactly one less than some term in S2 we can exchange these terms and make δ smaller, a

contradiction. So, because all scores between 0 and 10 occur, if the smallest term in S1 is a

then a+ 1 must also appear in S1 and so a+ 2 etc. must also appear in S1. Let the largest

therm in S2 be b. Then 5ma ≤ S1 < S2 ≤ 5mb, so b > a, so b− 1 must appear in S1 and we

can exchange b− 1 from S1 and b from S2 to reduce δ, a contradiction.
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Series I, exercise 3 Let f : R→ R be a function satisfying

f(xy) =
f(x) + f(y)

x+ y
.

for all x, y ∈ R, with x 6= −y. Is there x ∈ R such that f(x) 6= 0.

Solution For y = 0 we have

f(0) =
f(x) + f(0)

x
(x 6= 0).

From this equation we obtain f(x) = f(0)(x− 1) and for x = 1 we get f(1) = 0.

For y = 1 we have

f(x) =
f(x) + f(1)

x+ 1
(x 6= −1).

Hence we obtain xf(x) = 0 and we have f(x) = 0 for all x 6= 0,−1. Now if we put x = 2,

y = 0 and we get f(0) = 0 and for x = 0, y = −1 we obtain f(−1) = 0.
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