On Pinaki Mondal's generalization of the Kouchnirenko theorem

Rogi 2017

Szymon Brzostowski

- $\rightarrow \quad \mathbb{N} \coloneqq \{1, 2, \ldots\}, \, \mathbb{N}_0 \coloneqq \mathbb{N} \cup \{0\}$
- → Let $n \ge 2$. For $f \in \mathbb{C}[[z_1, ..., z_n]]$, f(0) = 0, $f = \sum_{i \in \mathbb{N}_0^n} a_i z^i$, where $z^i = z_1^{i_1} \cdot \ldots \cdot z_n^{i_n}$ is the usual multi-index notation, we define:
 - Supp $f := \{i: a_i \neq 0\} \subset \mathbb{R}^n$, the support of f,
 - $\Gamma_{+}(f) \coloneqq \operatorname{conv}(\operatorname{Supp} f) + \mathbb{R}^{n}_{\geq 0}, \text{ the <u>Newton polyhedron of } f$ </u>
 - $\frac{\Gamma_0(f)}{\text{diagram of } f}$:=the union of the compact faces of $\Gamma_+(f)$, called the <u>Newton</u> diagram of f,
 - − $\Gamma_{-}(f)$:=the union of all the segments joining the origin $0 \in \mathbb{R}^{n}$ with a point of $\Gamma_{0}(f)$.

Additionally, for f a *polynomial*, the set $NP(f) \coloneqq conv(Supp f)$ is called the Newton polygon of f.

→ $f \in \mathbb{C}[[z_1, ..., z_n]]$ is <u>convenient</u> if $\Gamma_0(f)$ touches every coordinate axis.

Definitions. Example

Let $f := (y^6 + x^2 y^2 - 2x^3 y + x^4) - 2xy^5 + x^2 y^4 - 3x^6 y^4 - \frac{2\pi i}{3}x^8$.

Let us recall

Definition

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a holomorphic germ. The <u>Milnor number</u> <u>off</u> is $\mu(f) \coloneqq \dim_{\mathbb{C}} \frac{\mathbb{C}[[z]]}{(\nabla f) \mathbb{C}[[z]]}.$

Problem. Can the value of the Milnor number of a germ f be computed combinatorically from the Newton diagram of f, if f is "non-degenerate" in some sense?

A positive answer to this question was given by A. G. Kouchnirenko.

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a holomorphic germ, $f = \sum_{i \in \mathbb{N}_0^n} a_i z^i$. For any vector $v \in \mathbb{N}^n$ let S_v denote the face of $\Gamma_0(f)$ supported by v. We define the initial form of f with respect to v as $\inf_{v \in S_v} a_i z^i$.

 \rightarrow We say that f is Kouchnirenko non-degenerate on a face S_{ν} of $\Gamma_0(f)$ if the system

$$\{\nabla in_{v}f=0\} = \left\{\frac{\partial in_{v}f}{\partial z_{1}} = \dots = \frac{\partial in_{v}f}{\partial z_{n}} = 0\right\}$$

has no solutions in $(\mathbb{C}^*)^n$, where $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$.

→ We say that f is Kouchnirenko non-degenerate, if f is Kouchnirenko non-degenerate on every face S_v of its Newton diagram.

The basic version of Kouchnirenko theorem can be stated as follows:

Theorem 1 (Kouchnirenko '76)

- *If* $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ *is* <u>convenient</u>, then:
 - $1. \ \mu(f) \! \geqslant \! \nu(f),$
 - 2. *if f is Kouchnirenko non-degenerate, then* $\mu(f) = \nu(f) < \infty$.

Moreover, the above non-degeneracy is "generic" in the space of all holomorphic germs g satisfying $\Gamma_0(g) = \Gamma_0(f)$.

Here, $\nu(f)$ is the combinatorial <u>Newton number</u> given by the formula

$$\nu(f) \coloneqq \sum_{\mathcal{I} \subset \{1, \dots, n\}} (-1)^{n - |\mathcal{I}|} \cdot |\mathcal{I}|! \cdot \operatorname{vol}_{|\mathcal{I}|}(\Gamma_{-}(f) \cap \mathbb{R}^{\mathcal{I}}),$$

where we put $\mathbb{K}^{\mathcal{I}} := \{x \in \mathbb{K}^n : x_i = 0 \text{ for } i \notin \mathcal{I}\}, \mathbb{K} = \mathbb{R} \lor \mathbb{C}.$

The previous result can be generalized to the case of non-convenient germs. This was remarked by Kouchnirenko and rigorously proved by Brzostowski and Oleksik.

Theorem 2 (B.–Oleksik)

If $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ and $\nu(f) < \infty$, then:

1. $\mu(f) \ge \nu(f)$,

2. *if f is Kouchnirenko non-degenerate, then* $\mu(f) = \nu(f)$.

Moreover, the above non-degeneracy is "generic" in the space of all holomorphic germs g satisfying $\Gamma_0(g) = \Gamma_0(f)$.

Here, the definition of the Newton number is extended to the "non-convenient case" by the formula

 $\nu(f) \coloneqq \sup_{k \in \mathbb{N}} \nu(f + \sum_{1 \leq i \leq n} z_i^k).$

- In the 2–dimensional case Kouchnirenko's result is sharp, that is any germ f (convenient or not) satisfying $\mu(f) = \nu(f)$ has to be Kouchnirenko non-degenerate (Kouchnirenko '76, Płoski '99).
- \rightarrow If $n \ge 3$ this is not the case. Here is the example provided by Kouchnirenko himself: Consider $f := (x+y)^2 + xz + z^2$. Then f is Kouchnirenko degenerate with respect to the vector v :=(1, 1, 2): the system $\{\nabla in_v f = 0\} = \{\nabla (x + y)^2 =$ 0} possesses solutions in $(\mathbb{C}^*)^3$. Nevertheless, $\nu(f) = \mu(f) = 1.$

Question

How to make the Kouchnirenko theorem a sharp one?

Local Bernstein's and Mondal's non-degeneracies

→ Let $f_1, ..., f_m \in \mathbb{C}[[z_1, ..., z_n]], m \ge n$. We say that $(f_1, ..., f_m)$ is Bernstein non-degenerate at 0 if for every $v \in \mathbb{N}^n$ the system

 $\{\operatorname{in}_{v}f_{1}=\ldots=\operatorname{in}_{v}f_{m}=0\}$

doesn't have solutions in $(\mathbb{C}^*)^n$.

→ Let m=n. We say that $(f_1, ..., f_n)$ is Mondal non-degenerate if for all $\emptyset \neq \mathcal{I} \subset \{1, ..., n\}$ the tuple $(f_1|_{\mathbb{C}^{\mathcal{I}}}, ..., f_n|_{\mathbb{C}^{\mathcal{I}}})$ is Bernstein non-degenerate at 0.

→ Mondal's non-degeneracy for gradients is in general <u>weaker</u> than Kouchnirenko's:

Consider again $f := (x + y)^2 + xz + z^2$. We have

$$\nabla f = (2x + 2y + z, 2x + 2y, x + 2z).$$

As before take the vector v := (1, 1, 2): the system $\left\{ in_v \frac{\partial f}{\partial x} = in_v \frac{\partial f}{\partial y} = in_v \frac{\partial f}{\partial z} = 0 \right\} = \{2x + 2y = x = 0\}$ has got *no* solutions in $(\mathbb{C}^*)^3$. The same thing can be checked for all other vectors $v \in \mathbb{N}^n$. Hence, ∇f is Bernstein at 0 (also Mondal) non-degenerate.

Since we are working over \mathbb{C} , Mondal's result can be stated as this:

Theorem 3 (Mondal)

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$. Assume that $\nu(f) < \infty$. The f.s.a.e.:

1. ∇f is Mondal non-degenerate,

2. $\mu(f) = \nu(f)$.

Commentary

Actually, P. Mondal assumes that $f \in \mathbb{C}[z_1, ..., z_n]$, not $f \in \mathbb{C}[[z_1, ..., z_n]]$. This seemingly weaker result implies the above one as follows:

→ if $g \in \mathbb{C}[z_1, ..., z_n]$ is a ,,<u>partial sum</u>" approximating f, so that in particular ord(f - g) = N and $N \gg 0$, then $\mu(g) = \mu(f)$,

→ ∇g and ∇f are both Mondal (non-)degenerate and $\nu(g) = \nu(f)$.

Lemma 1 (cf. Kouchnirenko '76)

Let $f \in \mathbb{C}[z_1, ..., z_n]$, f(0) = 0, and let z^k be a monomial, $k \in \mathbb{N}_0^n \setminus \{0\}$. Assume that Supp $f \cup \{k\}$ is contained in a hyperplane of \mathbb{R}^n with normal vector $l = (l_1, ..., l_n) \in \mathbb{N}^n$. Then for almost all choices of $s \in \mathbb{C}$ the function $g := f + s \cdot z^k$ is quasihomogeneous with weights l and the system $\{\nabla g = 0\}$ has no solutions in $(\mathbb{C}^*)^n$.

A direct consequence of the above lemma is:

Corollary 1

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ and let z^k be a monomial, $k \in \mathbb{N}_0^n \setminus \{0\}$. Then for almost all choices of $s \in \mathbb{C}$ the function $g := f + s \cdot z^k$ is Kouchnirenko non-degenerate on all these faces of its Newton diagram which contain the point k. In particular, if f is Kouchnirenko non-degenerate, so is g, at least generically.

Proof of Lemma 1

- → Clearly, g is quasihomogeneous with weights l regardless of the value of $s \in \mathbb{C}$. By substituting $z \to (z_1^{l_1}, ..., z_n^{l_n})$, we may assume that g (and f) is homogeneous.
- $\rightarrow \text{Put: } \boldsymbol{\kappa} \coloneqq (k_1, \dots, k_{n-1}, 0), \ \boldsymbol{d} \coloneqq \deg \boldsymbol{g}. \text{ Then } \boldsymbol{d} > 0, \text{ and we have} \\ h(z) \coloneqq \boldsymbol{g} \left(\frac{z_1^d \cdot z_n}{z^{\kappa}}, \dots, \frac{z_{n-1}^d \cdot z_n}{z^{\kappa}}, \frac{z_n}{z^{\kappa}} \right) = (\frac{z_n}{z^{\kappa}})^d \cdot \boldsymbol{g}(z_1^d, \dots, z_{n-1}^d, 1) = (\frac{z_n}{z^{\kappa}})^d \cdot (\boldsymbol{f}(z_1^d, \dots, z_{n-1}^d, 1) + s \cdot z_1^{d \cdot k_1} \cdot \dots \cdot z_{n-1}^{d \cdot k_{n-1}}) = z_n^d \cdot (\boldsymbol{p}(z_1, \dots, z_{n-1}) + s), \\ \text{where } h, p \in \mathbb{C}[z, z^{(-1, \dots, -1)}] \text{ and } p \text{ does not depend on } z_n.$
- → It is easy to see that the systems { $\nabla g=0$ } and { $\nabla h=0$ } are equivalent in $(\mathbb{C}^*)^n$. But { $\nabla h=0$ } $\Leftrightarrow_{(\mathbb{C}^*)^n}$ { $\frac{\partial p}{\partial z_1}=\ldots=\frac{\partial p}{\partial z_{n-1}}=p+s=0$ }.
- → By Bertini-Sard theorem applied to p we get the assertion of the lemma.

For isolated singularities we can weaken Mondal's non-degeneracy condition:

- \rightarrow We will prove this theorem indirectly, using P. Mondal's results.
- → By Theorem 3, and since $(2) \Rightarrow (1)$ is trivial, we only need to show $(1) \Rightarrow (3)$.

Let us first note the following

Lemma 2

If $f_1, ..., f_n \in \mathbb{C}[[z_1, ..., z_n]]$, are all <u>convenient</u>, then $(f_1, ..., f_n)$ are Bernstein non-degenerate at 0 iff they are Mondal non-degenerate.

Proof of the lemma

,,⇒". Take any Ø ≠ I ⊂ {1, ..., n}. Without loss of generality, we may assume that $I = \{1, ..., p\}$, p < n. Take any $v = (v_1, ..., v_p) \in \mathbb{N}^p$. Put $v_{\infty} := (v_1, ..., v_p, N, ..., N) \in \mathbb{N}^n$, where $N \gg 0$. By assumption, $f_i|_{\mathbb{C}^I} = f_i(z_1, ..., z_p, 0, ..., 0) \neq 0$ (i = 1, ..., n). Hence, $\operatorname{in}_v(f_i|_{\mathbb{C}^I}) = \operatorname{in}_{v_{\infty}} f_i$, for i = 1, ..., n. This means that the system $\{\operatorname{in}_v(f_i|_{\mathbb{C}^I}) = 0\}_{1 \leq i \leq n}$ has no solutions in $(\mathbb{C}^*)^n$ and – consequently – no solutions in $(\mathbb{C}^*)^I$.

"⇐". Trivial.

Proof of implication $,,(1) \Rightarrow (3)$ **" of the theorem**

- → Assume that ∇f is Bernstein non-degenerate at 0. Consider $g(z) \coloneqq f(z) + a(z)$, where a(z) is a generic enough form of degree $N \gg 0$. Then $\mu(g) = \mu(f) < \infty$. By Corollary 1, ∇g is Bernstein non-degenerate at 0.
- → Since we may assume that all the $\frac{\partial g}{\partial z_i}$ are convenient, Lemma 2 asserts that ∇g is Mondal non-degenerate. For the same reason, $\nu(g) < \infty$. Hence, Theorem 3 gives the equality $\mu(g) = \nu(g)$. Consequently, $\mu(f) = \nu(g)$.
- → On the other hand, Theorem 2 allows us to find an isolated singularity \bar{f} which is Kouchnirenko non-degenerate and $\Gamma_0(\bar{f}) = \Gamma_0(f)$. Defining \bar{g} similarly as above, we get $\nu(f) = \nu(\bar{f}) = \mu(\bar{f}) = \nu(\bar{g}) = \nu(g)$.
- → Summing up, $\mu(f) = \nu(f)$.

P. Mondal also gives a criterion for a map-germ to have its intersection multiplicity at 0 computable using a combinatorial quantity.

Theorem 5 (Mondal)

Let $f = (f_1, \dots, f_n): (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$. Assume that $(\Gamma_1(f_1), \dots, \Gamma_n(f_n))_0 < \infty$. The f.s.a.e.:

- 1. $(f_1, ..., f_n)$ is Mondal non-degenerate,
- 2. $(f_1, ..., f_n)_0 = (\Gamma_1(f_1), ..., \Gamma_n(f_n))_0.$
- → Here, $(\Gamma_1(f_1), ..., \Gamma_n(f_n))_0$ is a notation for the "generic" (=minimal) value of the intersection multiplicity for map-germs with the same *n*-tuple of Newton diagrams as *f*'s one.
- → Moreover, Mondal gives (a rather complicated) combinatorial formula for $(\Gamma_1(f_1), ..., \Gamma_n(f_n))_0$.

It turns out that under the condition that all f_i are convenient, one part of Mondal's theorem has already been proved (see the book of Aizenberg&Yuzhakov, Thms. 22.9, 22.10):

Theorem 6 Let $f = (f_1, ..., f_n): (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$. If all the f_i are <u>convenient</u>, then: 1. $(f_1, ..., f_n)_0 \ge (\Gamma_1(f_1), ..., \Gamma_n(f_n))_0$, 2. if $(f_1, ..., f_n)$ is <u>Bernstein</u> non-degenerate at 0, then $(f_1, ..., f_n)_0 = (\Gamma_1(f_1), ..., \Gamma_n(f_n))_0 < \infty$.

Moreover, the above non-degeneracy is "generic" in an appropriate sense.

Remark

Actually, the statement of the above theorem given by Aizenberg and Yuzhakov is incorrect, because it doesn't guarantee that the f_i are convenient and the proof requires this (P. Mondal, personal communication to Prof. Krasiński).

Necessity of Mondal's non-degeneracy for general systems ^{19/20}

Example (Mondal, personal communication to Prof. Krasiński)

- $\rightarrow \text{ Consider } f \coloneqq x + y + z, g \coloneqq x + y + 2z + x^2, h \coloneqq z \cdot (x + 2y + 3z).$
- \rightarrow It is easy to see that the system is Bernstein non-degenerate at 0.
- → However, if you restrict the system to the (x, y)-plane you get $\{x + y = x + y + x^2 = 0\}$ and this system is Bernstein degenerate at 0 with respect to the vector v := (1, 1). Hence, (f, g, h) is Mondal degenerate.
- → Correspondingly, $(f,g,h)_0 = 3$ but $(\Gamma_0(f),\Gamma_0(g),\Gamma_0(h))_0 = 2$.
- → Any ,convenientation" of the system, e.g. $\overline{f} := f$, $\overline{g} := g$, $\overline{h} := h + ax^k + by^l$, $l > k \ge 4$, leads to a system which is always Bernstein degenerate at 0, as can be seen by considering the vector v := (1, 1, k - 1): $in_v \overline{h} = z \cdot (x + 2y) + ax^k$.
- → Hence, an analogue of Lemma 1 is not valid in general and one cannot repeat the reasoning from the proof of Theorem 4 in the case of arbitrary systems.

20/20

Drziękuję za uwagę!