On Pinaki Mondal's generalization of the Kouchnirenko theorem

Rogi 2017

Szymon Brzostowski

- → \mathbb{N} ={1,2,...}, \mathbb{N}_0 = $\mathbb{N} \cup$ {0}
- → Let $n \ge 2$. For $f \in \mathbb{C}[[z_1, ..., z_n]], f(0) = 0, f = \sum_{i \in \mathbb{N}_0^n} a_i z^i$, where $z^i = z_1^{i_1} \cdot ... \cdot z_n^{i_n}$ is the usual multi-index notation, we define:
	- $-$ Supp $f := {i : a_i \neq 0}$ ⊂ ℝ^{*n*}, the support of f ,
	- − Γ+(*f*)≔conv(Supp *f*)+ℝ⩾0 *n* , the Newton polyhedron of *f*
	- $-\Gamma_0(f)$:=the union of the compact faces of $\Gamma_+(f)$, called the <u>Newton</u> diagram of *f* ,
	- − Γ−(*f*):=the union of all the segments joining the origin 0∈ℝ*ⁿ* with a point of $\Gamma_0(f)$.

Additionally, for *f* a *polynomial*, the set $NP(f) := conv(Supp f)$ is called the Newton polygon of *f* .

 \rightarrow $f \in \mathbb{C}[[z_1, ..., z_n]]$ is <u>convenient</u> if $\Gamma_0(f)$ touches every coordinate axis.

Definitions. Example 3/20

Let $f := (y^6 + x^2y^2 - 2x^3y + x^4) - 2xy^5 + x^2y^4 - 3x^6y^4 - \frac{2\pi i}{3}x^8$.

Let us recall

Definition

$Let f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ *be a holomorphic germ. The <u>Milnor number</u> of f is* $\mu(f) := \dim_{\mathbb{C}} \frac{\mathcal{L}[\mathcal{L}_1]}{(\nabla f) \cap \mathcal{L}}$ $\mathbb{C}[[z]]$ $(\nabla f) \mathbb{C}[[z]]$ *.*

Problem. Can the value of the Milnor number of a germ *f* be computed combinatorically from the Newton diagram of f , if f is , non-degenerate" in some sense?

A positive answer to this question was given by A. G. Kouchnirenko.

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a holomorphic germ, $f = \sum_{i \in \mathbb{N}_0^n} a_i z^i$. For any vector $v \in \mathbb{N}^n$ let S_v denote the face of $\Gamma_0(f)$ supported by *v*. We define the <u>initial form of *f* with respect to *v* as $\frac{\text{in}_{v} f}{\text{in}_{v} f} = \sum_{i \in S_v} a_i z^i$.</u>

 \rightarrow We say that *f* is Kouchnirenko non-degenerate on a face S_v of $\Gamma_0(f)$ if the system

$$
\{\nabla \mathrm{in}_{\nu} f = 0\} = \left\{\frac{\partial \mathrm{in}_{\nu} f}{\partial z_1} = \ldots = \frac{\partial \mathrm{in}_{\nu} f}{\partial z_n} = 0\right\}
$$

has no solutions in $(\mathbb{C}^*)^n$, where $\mathbb{C}^* := \mathbb{C} \setminus \{0\}.$

 \rightarrow We say that *f* is Kouchnirenko non-degenerate, if *f* is Kouchnirenko non-degenerate on every face S_ν of its Newton diagram.

The basic version of Kouchnirenko theorem can be stated as follows:

Theorem 1 (Kouchnirenko '76)

- *If* $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ *is <u>convenient</u>, then:*
	- *1.* $\mu(f) \geq \nu(f)$,
	- *2. if f is Kouchnirenko non-degenerate, then* $\mu(f) = \nu(f) < \infty$ *.*

Moreover, the above non-degeneracy is , generic" in the space of all holomorphic germs g satisfying $\Gamma_0(g) = \Gamma_0(f)$ *.*

Here, $\nu(f)$ is the combinatorial Newton number given by the formula

$$
\nu(f) := \sum_{\mathcal{I} \subset \{1, \dots, n\}} (-1)^{n-|\mathcal{I}|} \cdot |\mathcal{I}|! \cdot \text{vol}_{|\mathcal{I}|}(\Gamma_-(f) \cap \mathbb{R}^{\mathcal{I}}),
$$

where we put $K^{\mathcal{I}} := \{x \in K^n : x_i = 0 \text{ for } i \notin \mathcal{I}\}\,$, $K = \mathbb{R} \vee \mathbb{C}$.

The previous result can be generalized to the case of non-convenient germs. This was remarked by Kouchnirenko and rigorously proved by Brzostowski and Oleksik.

Theorem 2 (B.–Oleksik)

If $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ *and* $\nu(f) < \infty$ *, then:*

 $1. \mu(f) \geq \nu(f)$,

2. *if f* is *Kouchnirenko non-degenerate, then* $\mu(f) = \nu(f)$ *.*

Moreover, the above non-degeneracy is , generic" in the space of all holomorphic germs g satisfying $\Gamma_0(g) = \Gamma_0(f)$ *.*

Here, the definition of the Newton number is extended to the , non-convenient case" by the formula

 $\nu(f) := \sup_{k \in \mathbb{N}} \nu(f + \sum_{1 \leq i \leq n} z_i^k).$

- In the 2–dimensional case Kouchnirenko's result is sharp, that is any germ *f* (convenient or not) satisfying $\mu(f) = \nu(f)$ has to be Kouchnirenko non-degenerate (Kouchnirenko '76, Płoski '99).
- \rightarrow If $n \geq 3$ this is not the case. Here is the example provided by Kouchnirenko himself: Consider $f := (x+y)^2 + xz + z^2$. Then *f* is Kouchnirenko degenerate with respect to the vector *v*≔ (1, 1, 2): the system ${\text{Vin}}_v f = 0$ } = ${\text{V}(x + y)^2} =$ 0} possesses solutions in $(\mathbb{C}^*)^3$. Nevertheless, $\nu(f) = \mu(f) = 1.$

Question

How to make the Kouchnirenko theorem a sharp one?

Local Bernstein's and Mondal's non-degeneracies 9/20

 \rightarrow Let $f_1, ..., f_m \in \mathbb{C}[[z_1, ..., z_n]], m \geq n$. We say that $(f_1, ..., f_m)$ is Bernstein non-degenerate at 0 if for every $v \in \mathbb{N}^n$ the system

 $\{\sin_v f_1 = \ldots = \sin_v f_m = 0\}$

doesn't have solutions in $(\mathbb{C}^*)^n$.

 \rightarrow Let $m=n$. We say that $(f_1,...,f_n)$ is Mondal non-degenerate if for all $Ø ≠ I ⊂ \{1, ..., n\}$ the tuple $(f_1|_{\mathbb{C}^{\mathcal{I}}}, ..., f_n|_{\mathbb{C}^{\mathcal{I}}})$ is Bernstein non-degenerate at 0.

Mondal's non-degeneracy for gradients is in general weaker than Kouchnirenko's:

Consider again $f := (x + y)^2 + xz + z^2$. We have

$$
\nabla f = (2x + 2y + z, 2x + 2y, x + 2z).
$$

 \int in ∂f in ∂ . As before take the vector $v := (1, 1, 2)$: the system $\sin \frac{\theta y}{\partial x} = i$ ∂f _{\rightarrow in} $\frac{\partial y}{\partial x} = i n_v \frac{\partial y}{\partial y} = i$ ∂f _{\rightarrow in} $\frac{\partial y}{\partial y} = i n_v \frac{\partial y}{\partial z} = 0$ ∂f <u>∩</u> \int $\left\{\frac{\partial f}{\partial z} = 0\right\} = \left\{2x + 2y = x = 0\right\}$ has got *no* solutions in $(\mathbb{C}^*)^3$. The same thing can be checked for all other vectors $v \in \mathbb{N}^n$. Hence, ∇f is Bernstein at 0 (also Mondal) non-degenerate.

Since we are working over \mathbb{C} , Mondal's result can be stated as this:

Theorem 3 (Mondal)

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ *. Assume that* $\nu(f) < \infty$ *. The f.s.a.e.:*

1. ∇ *f is Mondal non-degenerate,*

2. $\mu(f) = \nu(f)$.

Commentary

Actually, P. Mondal assumes that $f \in \mathbb{C}[z_1, ..., z_n]$, not $f \in \mathbb{C}[[z_1, ..., z_n]]$. This seemingly weaker result implies the above one as follows:

 \rightarrow if $g \in \mathbb{C}[z_1, ..., z_n]$ is a "partial sum" approximating f, so that in particular ord $(f - g) = N$ and $N \gg 0$, then $\mu(g) = \mu(f)$,

 \rightarrow ∇g and ∇f are both Mondal (non-)degenerate and $\nu(g) = \nu(f)$.

Lemma 1 (cf. Kouchnirenko '76)

Let $f \in \mathbb{C}[z_1, ..., z_n]$, $f(0) = 0$, and let z^k be a monomial, $k \in \mathbb{N}_0^n \setminus \{0\}$.
Assume that Supp $f \cup \{k\}$ is contained in a hyperplane of \mathbb{R}^n with ${normal\hspace{0.15cm}}$ $vector\hspace{0.1cm} l\!=\!(l_1,...,l_n)\!\in\!\mathbb{N}^n$. Then for almost all choices of $s\!\in\!\mathbb{C}$ *the function g* = $f + s \cdot z^k$ *is quasihomogeneous with weights l and the system* $\{\nabla g = 0\}$ *has no solutions in* $({\mathbb C}^*)^n$.

A direct consequence of the above lemma is:

Corollary 1

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ and let z^k be a monomial, $k \in \mathbb{N}_0^n \setminus \{0\}$. Then for *almost all choices of s*∈ℂ *the function g*≔ *f* +*s*⋅*z k is Kouchnirenko non-degenerate on all these faces of its Newton diagram which contain the point k. In particular, if f is Kouchnirenko non-degenerate, so is g, at least generically.*

Proof of Lemma [1](#page-11-0)

- → Clearly, *g* is quasihomogeneous with weights *l* regardless of the value of $s \in \mathbb{C}$. By substituting $z \rightarrow (z_1^{l_1}, \ldots, z_n^{l_n})$, we may assume that *g* (and *f*) is homogeneous.
- Put: $\kappa := (k_1, \ldots, k_{n-1}, 0)$, $d := \deg g$. Then $d > 0$, and we have $h(z) := g\left(\frac{z_1^d \cdot z_n}{z^{\kappa}}, \ldots, \frac{z_{n-1}^d}{z^n}\right)$ $\frac{2n}{z^k}, \ldots, \frac{2n-1}{z^k}$ *z*^{*d*}_{*n*−1} · *z*_{*n*} *z*_{*n*} \setminus $\frac{z^{n}}{z^{k}}$, $\frac{z^{n}}{z^{k}}$) = *zⁿ* $\left(\frac{z_n}{z^k}\right) = \left(\frac{z_n}{z^k}\right)^d \cdot g$ $\frac{z_n}{z^k}$)^{*d*} \cdot </sup> $g(z_1^d, \ldots, z_{n-1}^d, 1) = (\frac{z_n}{z^k})^d \cdot (f(z_1^d,$ $\left(\frac{z_n}{z^k}\right)^d \cdot \left(f(z_1^d, \ldots, z_n)\right)$ z_{n-1}^d , 1) + *s* · $z_1^{d \cdot k_1}$ · … · $z_{n-1}^{d \cdot k_{n-1}}$ = z_n^d · $(p(z_1, ..., z_{n-1}) + s)$, where $h, p \in \mathbb{C}[z, z^{(-1,...,-1)}]$ and *p* does not depend on z_n .
- \rightarrow It is easy to see that the systems { $\nabla g = 0$ } and { $\nabla h = 0$ } are equivalent in $(\mathbb{C}^*)^n$. But $\{\nabla h = 0\} \Leftrightarrow \{\frac{\partial p}{\partial z_1} = \ldots = \frac{\partial p}{\partial z_{n-1}} =$ $\left(\mathbb{C}^*\right)^n$ $\mathcal{O}\mathcal{L}1$ $\sum_{n} \left\{ \frac{\partial p}{\partial z_1} = \ldots \right\}$ *dp* _ _ $\frac{\partial p}{\partial z_1} = \ldots = \frac{\partial p}{\partial z_{n-1}} = p + s =$ ∂*p* $\frac{\partial p}{\partial z_{n-1}} = p + s = 0$.
- \rightarrow By Bertini-Sard theorem applied to p we get the assertion of the lemma.

For isolated singularities we can weaken Mondal's non-degeneracy condition:

- \rightarrow We will prove this theorem indirectly, using P. Mondal's results.
- By Theorem [3,](#page-10-0) and since $(2) \Rightarrow (1)$ " is trivial, we only need to show $(1) \Rightarrow (3)$ ".

Let us first note the following

If f_1 , …, $f_n \in \mathbb{C}[[z_1, ..., z_n]],$ are all <u>convenient</u>, then $(f_1, ..., f_n)$ are *Bernma* 2
Bernstein non-degenerate at 0 *iff they are Mondal non-degenerate.*
Bernstein non-degenerate at 0 *iff they are Mondal non-degenerate.*

Proof of the lemma

", \Rightarrow ". Take any $\emptyset \neq \mathcal{I} \subset \{1, ..., n\}$. Without loss of generality, we may assume that $\mathcal{I} = \{1, ..., p\}, p < n$. Take any $v = (v_1, ..., v_p) \in \mathbb{N}^p$. Put $v_{\infty} := (v_1, ..., v_p, N, ..., N) \in \mathbb{N}^n$, where $N \gg 0$. By assumption, $f_i|_{\mathbb{C}}\mathcal{I}=f_i(z_1,...,z_p,0,...,0) \neq 0$ (*i*=1,…,*n*). Hence, in_{*v*}($f_i|_{\mathbb{C}}\mathcal{I}$)=in_{*v*∞} f_i , for $i=1,...,n$. This means that the system $\{\text{in}_v(f_i|_{\mathbb{C}^{\mathcal{I}}})=0\}_{1\leq i\leq n}$ has no solutions in $(\mathbb{C}^*)^n$ and – consequently – no solutions in $(\mathbb{C}^*)^{\mathcal{I}}$.

,, ∈". Trivial.

Proof of **implication** $(1) \Rightarrow (3)$ **"** of the theorem

- → Assume that ∇*f* is Bernstein non-degenerate at 0. Consider *g*(*z*)≔ $f(z) + a(z)$, where $a(z)$ is a generic enough form of degree *N* \gg 0. Then $\mu(g) = \mu(f) < \infty$. By Corollary [1,](#page-11-1) ∇g is Bernstein non-degenerate at 0.
- \rightarrow Since we may assume that all the $\frac{\partial \mathcal{S}}{\partial z_i}$ are c ∂*g* ∂*zⁱ* are convenient, Lemma [2](#page-14-0) asserts that ∇g is Mondal non-degenerate. For the same reason, $\nu(g) < \infty$. Hence, Theorem [3](#page-10-0) gives the equality $\mu(g) = \nu(g)$. Consequently, $\mu(f) = \nu(g)$.
- On the other hand, Theorem [2](#page-6-0) allows us to find an isolated singularity *f* which is Kouchnirenko non-degenerate and $\Gamma_0(f) = \Gamma_0(f)$. Defining *g* similarly as above, we get $\nu(f) = \nu(f) = \mu(f) = \nu(g) = \nu(g)$.
- \sum Summing up, $\mu(f) = \nu(f)$.

P. Mondal also gives a criterion for a map-germ to have its intersection multiplicity at 0 computable using a combinatorial quantity.

Theorem 5 (Mondal)

Let $f = (f_1, ..., f_n) : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ *. Assume that* $(\Gamma_1(f_1), ..., \Gamma_n(f_n))_0 < \infty$ *. The f.s.a.e.:*

- *1.* (*f*1,…, *fn*) *is Mondal non-degenerate,*
- 2. $(f_1, ..., f_n)_{0} = (\Gamma_1(f_1), ..., \Gamma_n(f_n))_{0}$ *.*
- \rightarrow Here, $(\Gamma_1(f_1), ..., \Gamma_n(f_n))_0$ is a notation for the "generic" (=minimal) value of the intersection multiplicity for map-germs with the same *n*tuple of Newton diagrams as *f* 's one.
- \rightarrow Moreover, Mondal gives (a rather complicated) combinatorial formula for $(\Gamma_1(f_1), ..., \Gamma_n(f_n))_0$.

It turns out that under the condition that all f_i are convenient, one part of Mondal's theorem has already been proved (see the book of Aizenberg&Yuzhakov, Thms. 22.9, 22.10):

Let $f = (f_1, ..., f_n)$: $(\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^n, 0)$ *. If all the* f_i *are* <u>convenient</u>, *then: 1*. $(f_1, ..., f_n)_0 \geq (\Gamma_1(f_1), ..., \Gamma_n(f_n))_0$ *2. if* (*f*1,…, *fn*) *is Bernstein non-degenerate at* 0*, then* $(f_1, ..., f_n)_0 = (\Gamma_1(f_1), ..., \Gamma_n(f_n))_0 < \infty$. **Theorem 6**

Moreover, the above non-degeneracy is , generic" in an appropriate sense.

Remark

Actually, the statement of the above theorem given by Aizenberg and Yuzhakov is incorrect, because it doesn't guarantee that the *fⁱ* are convenient and the proof requires this (P. Mondal, personal communication to Prof. Krasiński).

Necessity of Mondal's non-degeneracy for general systems 19/20

Example (Mondal, personal communication to Prof. Krasiński)

- → Consider $f := x + y + z$, $g := x + y + 2z + x^2$, $h := z \cdot (x + 2y + 3z)$.
- It is easy to see that the system is Bernstein non-degenerate at 0.
- \rightarrow However, if you restrict the system to the (x, y) -plane you get $\{x + y = x\}$ $x + y + x^2 = 0$ and this system is **Bernstein degenerate at 0** with respect to the vector $v = (1, 1)$. Hence, (f, g, h) is Mondal degenerate.
- Correspondingly, (f, g, h) ₀=3 but $(\Gamma_0(f), \Gamma_0(g), \Gamma_0(h))$ ₀=2.
- \rightarrow Any ,, convenientation" of the system, e.g. $\bar{f} = f$, $\bar{g} = g$, $\bar{h} = h + a x^k + b y^l$, $l > k \geq 4$, leads to a system which is always **Bernstein degenerate at 0**, as can be seen by considering the vector $v := (1, 1, k - 1)$: $\sin_v \overline{h} = z \cdot (x + 2y) + a x^k$.
	- Hence, an analogue of Lemma [1](#page-11-0) is not valid in general and one cannot repeat the reasoning from the proof of Theorem [4](#page-13-0) in the case of arbitrary systems.

20/20

Dziękuję za uwagę!