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→ ℕ ≔f1,2, …g, ℕ0 ≔ℕ ∪f0g
→ Let n ⩾ 2. For f ∈ ℂ[[z1, …, zn]], f (0) = 0, f = ∑i∈ℕ0

n ai zi, where
zi = z1

i1 ⋅… ⋅ zn
in is the usual multi-index notation, we define:

− Supp f ≔fi:ai ≠0g⊂ℝn, the support of f ,

− Γ+( f )≔ conv(Supp f )+ℝ⩾0
n , the Newton polyhedron of f

− Γ0( f ):=the union of the compact faces of Γ+( f ), called the Newton
diagram of f ,

− Γ−( f ):=the union of all the segments joining the origin 0∈ℝn with
a point of Γ0( f ).

Additionally, for f a polynomial, the set NP( f ) ≔ conv(Supp f ) is
called the Newton polygon of f .

→ f ∈ℂ[[z1, …, zn]] is convenient if Γ0( f ) touches every coordinate axis.
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Let f ≔(y6 + x2 y2 − 2 x3 y + x4)− 2 x y5 + x2 y4 −3 x6 y4 − 2 π i
3 x8.
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The Milnor number in the generic case 4/20

Let us recall

Let f : (ℂn, 0)→ (ℂ, 0) be a holomorphic germ. The Milnor number
of f is

μ( f )≔dimℂ
ℂ[[z]]

(∇ f )ℂ[[z]] .

Definition

Problem. Can the value of the Milnor number of a germ f be computed
combinatorically from the Newton diagram of f , if f is „non-degenerate”
in some sense?

A positive answer to this question was given by A. G. Kouchnirenko.
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Let f :(ℂn,0)→(ℂ,0) be a holomorphic germ, f =∑i∈ℕ0
n ai zi. For any

vector v∈ℕn let Sv denote the face of Γ0( f ) supported by v. We define
the initial form of f with respect to v as inv f ≔∑i∈Sv

ai zi.

→ We say that f is Kouchnirenko non-degenerate on a face Sv of
Γ0( f ) if the system

f∇inv f = 0g=
�

∂inv f
∂z1

=… = ∂inv f
∂zn

=0
�

has no solutions in (ℂ∗)n, where ℂ∗ ≔ℂ∖f0g.

→ We say that f is Kouchnirenko non-degenerate, if f is Kouch-
nirenko non-degenerate on every face Sv of its Newton diagram.
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The basic version of Kouchnirenko theorem can be stated as follows:

If f : (ℂn, 0)→ (ℂ,0) is convenient, then:

1. μ( f )⩾ ν( f ),

2. if f is Kouchnirenko non-degenerate, then μ( f )=ν( f )<∞.

Moreover, the above non-degeneracy is „generic” in the space of
all holomorphic germs g satisfying Γ0(g)=Γ0( f ).

Theorem 1 (Kouchnirenko '76)

Here, ν( f ) is the combinatorial Newton number given by the formula

ν( f )≔∑I⊂f1,…,ng (−1)n−jI j ⋅ jI j! ⋅voljI j(Γ−( f )∩ℝI),

where we put 𝕂I≔fx ∈ 𝕂n: xi = 0 for i∉Ig, 𝕂 =ℝ ∨ℂ.
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The previous result can be generalized to the case of non-convenient germs.
This was remarked by Kouchnirenko and rigorously proved by Brzostowski and
Oleksik.

If f : (ℂn, 0)→ (ℂ, 0) and ν( f )<∞, then:

1. μ( f )⩾ν( f ),

2. if f is Kouchnirenko non-degenerate, then μ( f )=ν( f ).

Moreover, the above non-degeneracy is „generic” in the space of all
holomorphic germs g satisfying Γ0(g)=Γ0( f ).

Theorem 2 (B.–Oleksik)

Here, the definition of the Newton number is extended to the „non-convenient
case” by the formula

ν( f )≔supk∈ℕ ν( f +∑1⩽i⩽n zi
k).



Sharpness of the Kouchnirenko theorem 8/20

→ In the 2–dimensional case Kouchnirenko's result is sharp, that is
any germ f (convenient or not) satisfying μ( f ) = ν( f ) has to be
Kouchnirenko non-degenerate (Kouchnirenko '76, Płoski '99).

→ If n ⩾ 3 this is not the case. Here is the example provided by
Kouchnirenko himself:
Consider f ≔(x+y)2+x z+z2. Then f is Kouch-
nirenko degenerate with respect to the vector v≔
(1, 1, 2): the system f∇inv f = 0g= f∇(x + y)2 =
0g possesses solutions in (ℂ∗)3. Nevertheless,
ν( f )= μ( f )= 1.

How to make the Kouchnirenko theorem a sharp one?
Question



Local Bernstein's and Mondal's non-degeneracies 9/20

→ Let f1, …, fm ∈ ℂ[[z1, …, zn]], m ⩾ n. We say that ( f1, …, fm) is
Bernstein non-degenerate at 0 if for every v ∈ ℕn the system

finv f1 =… =inv fm =0g

doesn't have solutions in (ℂ∗)n.

→ Let m=n. We say that ( f1,…, fn) is Mondal non-degenerate if for
all ∅ ≠I ⊂f1, …, ng the tuple ( f1∣ℂI, …, fn∣ℂI) is Bernstein non-
degenerate at 0.



Mondal's non-degeneracy. Example 10/20

→ Mondal's non-degeneracy for gradients is in general weaker than
Kouchnirenko's:

Consider again f ≔(x + y)2 + xz + z2. We have

∇ f = (2 x +2 y + z, 2 x +2 y, x + 2 z).

As before take the vector v ≔ (1, 1, 2): the systemn
inv

∂ f
∂x =inv

∂ f
∂y =inv

∂ f
∂z =0

o
=f2 x +2 y= x=0g has

got no solutions in (ℂ∗)3. The same thing can be
checked for all other vectors v ∈ ℕn. Hence, ∇ f is
Bernstein at 0 (also Mondal) non-degenerate.
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Since we are working over ℂ, Mondal's result can be stated as this:

Let f : (ℂn, 0)→ (ℂ,0). Assume that ν( f )<∞. The f.s.a.e.:

1. ∇ f is Mondal non-degenerate,

2. μ( f )= ν( f ).

Theorem 3 (Mondal)

Actually, P. Mondal assumes that f ∈ ℂ[z1, …, zn], not f ∈ ℂ[[z1, …, zn]].
This seemingly weaker result implies the above one as follows:

→ if g∈ℂ[z1,…,zn] is a „partial sum” approximating f , so that in partic-
ular ord( f −g)= N and N ≫0, then μ(g)= μ( f ),

→ ∇g and ∇ f are both Mondal (non-)degenerate and ν(g)=ν( f ).

Commentary
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Let f ∈ ℂ[z1, …, zn], f (0) = 0, and let zk be a monomial, k ∈ ℕ0
n ∖f0g.

Assume that Supp f ∪ {k} is contained in a hyperplane of ℝn with
normal vector l=(l1,…, ln)∈ℕn. Then for almost all choices of s∈ℂ
the function g≔ f +s ⋅zk is quasihomogeneous with weights l and the
system {∇g= 0} has no solutions in (ℂ∗)n.

Lemma 1 (cf. Kouchnirenko '76)

A direct consequence of the above lemma is:

Let f :(ℂn,0)→(ℂ,0) and let zk be a monomial, k ∈ℕ0
n∖f0g. Then for

almost all choices of s∈ℂ the function g≔ f + s ⋅zk is Kouchnirenko
non-degenerate on all these faces of its Newton diagram which con-
tain the point k. In particular, if f is Kouchnirenko non-degenerate,
so is g, at least generically.

Corollary 1
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→ Clearly, g is quasihomogeneous with weights l regardless of the value
of s ∈ ℂ. By substituting z → (z1

l1, …, zn
ln), we may assume that g (and

f ) is homogeneous.

→ Put: κ ≔ (k1, …, kn−1, 0), d ≔deg g. Then d >0, and we have
h(z)≔g

�
z1

d ⋅ zn

zκ ,…, zn−1
d ⋅ zn

zκ , zn

zκ

�
=( zn

zκ )d ⋅g(z1
d,…,zn−1

d ,1)=
¡ zn

zκ

�d ⋅( f (z1
d,…,

zn−1
d , 1)+ s ⋅ z1

d ⋅k1 ⋅… ⋅ zn−1
d⋅kn−1)= zn

d ⋅ (p(z1, …, zn−1)+ s),
where h, p ∈ℂ[z, z(−1,…,−1)] and p does not depend on zn.

→ It is easy to see that the systems {∇g=0} and {∇h=0} are equivalent
in (ℂ∗)n. But {∇h=0} ⇔

(ℂ∗)n
{ ∂p

∂z1
=…= ∂p

∂zn−1
= p + s=0}.

→ By Bertini-Sard theorem applied to p we get the assertion of the
lemma.

Proof of Lemma 1
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For isolated singularities we can weaken Mondal's non-degeneracy
condition:

Let f : (ℂn, 0)→ (ℂ,0) be an isolated singularity. The f.s.a.e.:

1. ∇ f is Bernstein non-degenerate at 0,

2. ∇ f is Mondal non-degenerate,

3. μ( f )= ν( f ).

Theorem 4

→ We will prove this theorem indirectly, using P. Mondal's results.

→ By Theorem 3, and since „(2) ⇒ (1)” is trivial, we only need to
show „(1)⇒ (3)”.



The nature of Mondal's non-degeneracy for singularities. Proof 15/20

Let us first note the following

If f1, …, fn ∈ ℂ[[z1, …, zn]], are all convenient, then ( f1, …, fn) are
Bernstein non-degenerate at 0 iff they are Mondal non-degenerate.

Lemma 2

„⇒”. Take any ∅ ≠ I ⊂ f1, …, ng. Without loss of generality, we may
assume that I = f1, …, pg, p < n. Take any v = (v1, …, vp) ∈ ℕp.
Put v∞ ≔ (v1, …, vp, N, …, N) ∈ ℕn, where N ≫ 0. By assumption,
fi∣ℂI= fi(z1, …, zp, 0, …, 0)≠ 0 (i =1, …, n). Hence, inv ( fi∣ℂI)= inv∞ fi,
for i=1,…,n. This means that the system finv( fi∣ℂI)=0g1⩽i⩽n has no
solutions in (ℂ∗)n and – consequently – no solutions in (ℂ∗)I.

„⇐”. Trivial.

Proof of the lemma



The nature of Mondal's non-degeneracy for singularities. Proof 16/20

→ Assume that ∇ f is Bernstein non-degenerate at 0. Consider g(z)≔
f (z)+a(z), where a(z) is a generic enough form of degree N≫0. Then
μ(g)=μ( f )<∞. By Corollary 1, ∇g is Bernstein non-degenerate at 0.

→ Since we may assume that all the ∂g
∂zi

are convenient, Lemma 2 asserts
that ∇g is Mondal non-degenerate. For the same reason, ν(g) < ∞.
Hence, Theorem 3 gives the equality μ(g) = ν(g). Consequently,
μ( f )=ν(g).

→ On the other hand, Theorem 2 allows us to find an isolated singularity
f which is Kouchnirenko non-degenerate and Γ0( f )=Γ0( f ). Defining
g similarly as above, we get ν( f )=ν( f )= μ( f )=ν(g)=ν(g).

→ Summing up, μ( f )=ν( f ).

Proof of implication „(1)⇒ (3)” of the theorem
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P. Mondal also gives a criterion for a map-germ to have its intersection
multiplicity at 0 computable using a combinatorial quantity.

Let f =( f1,…, fn):(ℂn,0)→(ℂn,0). Assume that (Γ1( f1),…,Γn( fn))0 <∞.
The f.s.a.e.:

1. ( f1, …, fn) is Mondal non-degenerate,

2. ( f1, …, fn)0 = (Γ1( f1), …, Γn( fn))0.

Theorem 5 (Mondal)

→ Here, (Γ1( f1), …, Γn( fn))0 is a notation for the „generic” (=minimal)
value of the intersection multiplicity for map-germs with the same n-
tuple of Newton diagrams as f 's one.

→ Moreover, Mondal gives (a rather complicated) combinatorial formula
for (Γ1( f1),…, Γn( fn))0.
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It turns out that under the condition that all fi are convenient, one part of Mondal's
theorem has already been proved (see the book of Aizenberg&Yuzhakov, Thms.
22.9, 22.10):

Let f = ( f1, …, fn): (ℂn, 0)→ (ℂn, 0). If all the fi are convenient, then:

1. ( f1, …, fn)0 ⩾ (Γ1( f1), …, Γn( fn))0 ,

2. if ( f1, …, fn) is Bernstein non-degenerate at 0, then
( f1, …, fn)0 = (Γ1( f1), …, Γn( fn))0 < ∞.

Moreover, the above non-degeneracy is „generic” in an appropriate sense.

Theorem 6

Actually, the statement of the above theorem given by Aizenberg and Yuzhakov
is incorrect, because it doesn't guarantee that the fi are convenient and the proof
requires this (P. Mondal, personal communication to Prof. Krasiński).

Remark
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→ Consider f ≔ x + y+z, g≔ x + y +2 z+x2, h≔ z ⋅ (x+2 y+3 z).

→ It is easy to see that the system is Bernstein non-degenerate at 0.

→ However, if you restrict the system to the (x, y)-plane you get fx + y =
x + y + x2 = 0g and this system is Bernstein degenerate at 0 with respect to
the vector v≔ (1, 1). Hence, ( f ,g, h) is Mondal degenerate.

→ Correspondingly, ( f , g,h)0 = 3 but (Γ0( f ), Γ0(g), Γ0(h))0 = 2.

→ Any „convenientation” of the system, e.g. f ≔ f , g ≔ g, h ≔ h + a xk + b yl,
l >k ⩾4, leads to a system which is always Bernstein degenerate at 0, as can
be seen by considering the vector v ≔ (1,1, k − 1): inv h= z ⋅ (x+2y)+ axk.

→ Hence, an analogue of Lemma 1 is not valid in general and one cannot repeat
the reasoning from the proof of Theorem 4 in the case of arbitrary systems.

Example (Mondal, personal communication to Prof. Krasiński)
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