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ISOLATED HOMOGENEOUS

AND SEMI-HOMOGENEOUS

HYPERSURFACE SINGULARITIES

Szymon Brzostowski and Tadeusz Krasiński1 (Łódź)

Abstract

We show how Zuo and Yau’s characterizations of homogeneous and semi-
homogeneous hypersurface singularities easily follow from the standard theo-
rems of multidimensional complex analysis.

1 Introduction

Homogeneous and weighted homogeneous (isolated) singularities play an impor-
tant role in singularity theory (see [Bri66], [Pha65]). Accordingly, the question of
finding possible characterizations of various „kinds” of these singularities is both
an important and interesting problem from the point of view of singularity the-
ory. An interesting characterization of weighted homogeneous singularities was
given by Saito in 1971 (see Section 3). Characterizations of homogeneous and
semi-homogeneous singularities in terms of some invariants were given in a series
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of papers by Xu, Yau, Lin and Zuo, the first of which appeared already in 1993.
The final general result was proved by Yau and Zuo in 2015 [YZ15] (details are
in Section 3). Another proof of their result was recently presented by Abderrah-
mane [Abd15]. The aim of this paper is to indicate that these characterizations
are immediate corollaries from a well-known theorem of multidimensional complex
analysis (more specifically from multiplicity theory of mappings) given by Zariski,
Tsikh and Yuzhakov. Section 2 is devoted to clarification of the notion of weighted
homogeneous polynomials (known also as quasihomogeneous) as there are various
definitions of this concept. In Section 3 we describe the history of known character-
izations of homogeneous and semi-homogeneous isolated singularities. In Section
4 we cite the aforementioned theorem on multiplicity of finite holomorphic maps
between spaces of the same dimensions. In Section 5 we obtain characterizations of
homogeneous and semi-homogeneous isolated singularities (given by Yau and Zuo)
as simple consequences of the result of Section 4. Moreover, we obtain a stronger
version of this characterization.

2 Weighted homogeneous polynomials

In this section we collect basic information on weighted homogeneous (or quasi-
homogeneous) polynomials. Since in literature there are various definitions of these,
we fix the following.

Definition 1 A polynomial P ∈ C[z1, . . . , zn] is
:::::::
weighted

::::::::::::
homogeneous if there

exist positive rational numbers w1, . . . , wn (
:::::::
weights) such that for each monomial

zi11 · . . . · zinn appearing in P with a non-zero coefficient it holds

w1 · i1 + . . .+ wn · in = 1.

Notice that if for a variable zk we have ik 6= 0 (so that P effectively depends on
zk), then wk 6 1. Therefore, we will always assume that wk 6 1 (k = 1, . . . , n).

Remark We work over C here, because we only want to apply the results of this
section to complex singularities. For the most part, there is no essential difference
in the treatment if one replaces C with a field K.

If a weight satisfies the inequality

0 < wi 6 1
2 ,

we call it a
::::::
strong

::::::
weight. Otherwise, if

1
2 < wi 6 1,

then this weight wi is called ::::
weak. If at least one weight is weak we say that

:::
the

::::::
weights

:::
of

::
P

:::
are

:::::
weak.
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If P is homogeneous, then P is weighted homogeneous with weights w1 =
. . . = wn = 1

degP . More generally, any polynomial (or a power series even) can be
represented as a sum of weighted homogeneous polynomials. In order to be able to
refer to this representation in a natural way, it is desirable to introduce the notion
of a weighted degree. This leads to the following, more flexible definition of the
concept of weighted homogeneous polynomials.

Definition 2 A polynomial P ∈ C[z1, . . . , zn] is
:::::::
weighted

::::::::::::
homogeneous

:::
of

::::::
degree

:
d if there exist positive integers ω1, . . . , ωn (

::::::
weights) and d (

::::::
degree) such that

gcd(ω1, . . . , ωn) = 1 and for each monomial zi11 · . . . · zinn appearing in P with
a non-zero coefficient it holds

ω1 · i1 + . . .+ ωn · in = d.

The integer d is called
:::
the

::::::::
weighted

:::::
degree

:::
of

::
P

::::
with

:::::::
respect

::
to

:::
the

:::::::
system

::
of

:::::::
weights

::::::::::::::
ω = (ω1, . . . , ωn) and is denoted by degω P .

It is not hard to see that both definitions introduce one and the same concept,
and can be used interchangeably, depending on one’s needs. Namely, if P is weighted
homogeneous of degree d with weights ω1, . . . , ωn (in the sense of Definition 2), then
P is also weighted homogeneous with weights wi := ωi

d in the sense of Definition
1. On the other hand, if w1, . . . , wn are the weights of P as in Definition 1 and we
write wi = ai

bi
, where ai and bi are co-prime positive integers, then upon putting

d := lcm(b1, . . . , bn) and ωi := ai
bi
d (i = 1, . . . , n) we can interpret P as being

weighted homogeneous of degree d, in the sense of the second definition. Note also
that in this correspondence we have wi 6 1/2 ⇔ ωi 6 d/2 and wi 6 1 ⇔ ωi 6 d.
Consequently, to be consistent with the agreement that we made before, we will
also always assume that ωi 6 d.

Equipped with this improved language, we may now easily express any formal
power series f ∈ C[[z1, . . . , zn]] as a formal sum of weighted homogeneous polyno-
mials of distinct increasing degrees,

f = fd1 + fd2 + . . . , d1 < d2 < . . . ;

namely we just collect the terms of same weighted ω-degree into polynomials fd.
This is always possible, for: (1) only finitely many n-tuples of non-negative integers
(i1, . . . , in) satisfy the relation ω1 · i1 + . . .+ ωn · in = d, (2) these tuples have the
property that ‖(i1, . . . , in)‖∞ → ∞ with d → ∞. Some of these fd’s may be zero
and then we can safely exclude them from the representation of f , but in order to
make such a representation truly unique we would have to assume that fdj 6= 0
for all j > 0, which is sometimes inconvenient. Anyways, if fd1 6= 0 then we call
this polynomial

:::
the

:::::
initial

:::::
part

::
of
::
f
:::::
with

:::::::
respect

:::
to

:::
the

::::::::
weights

::::::::::
ω1, . . . , ωn and

we denote it inω f . We can also use the notation inw f , where wi = ωi

d are the
corresponding rational weights. In particular, by this definition, we always have
inw f = inω f 6= 0 if f 6= 0.
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There is a clear geometric picture connected with weighted homogeneous poly-
nomials. Namely, let w1, . . . , wn be the rational weights of P and let

suppP :=
{

(i1, . . . , in) ∈ Nn
0 : zi11 · . . . · zinn appears in P with a non-zero coeff.

}
be the

::::::
support

:::
of

::
P . Then all the points of suppP lie in the hyperplane in Rn

defined by the equation

w1 · x1 + . . .+ wn · xn = 1,

and this hyperplane intersects the respective coordinate axes exactly at distances
1/w1, . . . , 1/wn from the origin.

Now, let us consider the problem of uniqueness of the (rational) weights of
a given weighted homogeneous polynomial P . Simple examples show that in general
P does not determine its weights. For instance, let P (z1, z2) := z1 · z2. There are
many possible choices for weights of P , e.g. w1 = w2 = 1

2 or w1 = 1
3 , w2 = 2

3 .
However, if we assume that P defines an isolated singularity at the origin, then one
can prove a simple criterion for the uniqueness of the weights. To this end, let us
first recall the notion of an isolated singularity.

A holomorphic function-germ f : (Cn, 0) → (C, 0) (the local ring of all such
germs at 0 will be denoted by On) is called an

:::::::
isolated

::::::::::
singularity (or

::::::
defines

:::
an

:::::::
isolated

::::::::::
singularity) if f has an isolated critical point at 0 i.e.

1. ∇f :=
(
∂f
∂z1

, . . . , ∂f∂zn

)
vanishes at 0,

2. ∇f(z) 6= 0 for small z ∈ Cn, z 6= 0.

If f(z) :=
∑
i∈Nn

0
aiz

i, where i = (i1, . . . , in), z = (z1, . . . , zn) and zi := zi11 · . . . ·zinn ,
then its support supp f = {i ∈ Nn

0 : ai 6= 0} has a simple feature.

Lemma 1 If f ∈ On is an isolated singularity, then for each k = 1, . . . , n a mono-
mial of the form zikk , where ik > 2, or zikk zj, where ik > 1, k 6= j, appears with
a non-zero coefficient in the power series expansion of f .

Proof Immediate, for otherwise all the partial derivatives ∂f
∂zi

would vanish along
the axis Ozk. 2

Proposition 1 If a weighted homogeneous polynomial P ∈ C[z1, . . . , zn] defines
an isolated singularity at 0 and ordP > 3, then its weights are unique and strong.
Moreover, wi < 1

2 (i = 1, . . . , n).

Proof Consider one of the weights; let this be w1 for simplicity. Because of Lemma
1 and since ordP > 3, in the expansion of P there appears a monomial of the form
zi11 , where i1 > 3, or zi11 zj , where i1 > 2, 1 6= j. In the first case we get w1 = 1

i1
< 1

2 ,
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so then this weight is uniquely determined by P itself. In the opposite case, upon
rearranging the variables, we may assume that zi11 z2 appears in P with a non-zero
coefficient. Repeating the above reasoning for the variable z2 we infer that either
w2 = 1

i2
< 1

2 for some i2 > 3, and then we also get w1 = 1−w2

i1
< 1

2 so that the
weight w1 is uniquely determined, or in P there appears a monomial zi22 zj , where
i2 > 2, 2 6= j, with a non-zero coefficient. In this second case it may happen that
j 6= 1. Then, again, we may assume that j = 3. Continuing this procedure, after
a finite number of steps either we will find that actually w1 is uniquely determined
by P or we will find „a cycle” of monomials appearing in P with non-zero coefficients:

zi11 z2, z
i2
2 z3, . . . , z

ik
k zj , where i1, . . . , ik > 2, j ∈ {1, . . . , k − 1}, k > 2.

This leads to the following linear system of equations in w1, . . . , wk:
i1w1 + w2 = 1
i2w2 + w3 = 1

...
...

ikwk + wj = 1

.

It is easy to check that the determinant of this system is equal to i1 . . . ij−1(ij . . . ik+
(−1)k+j), so it is non-zero because ik > 2. Hence, the weights w1, . . . , wk are uniquely
determined. Moreover, using the first equation, we see that w1 = 1−w2

i1
< 1

2 . Since
w1 was an arbitrarily fixed weight of P , the result follows. 2

Remark Note that in the proof of Proposition 1 we actually showed that the
weights wi have to be rational, even if one allowed wi to be real in Definition 1
(subject to the condition 0 < wi 6 1). The same remark concerns Proposition 2
below.

Example 1 The above result does not hold for isolated singularities of order 2.

• Take P (z1, z2) := z1z2. As we saw on page 12, the weights of P are not
uniquely determined.

• Take Q(z1, z2) := z1z2 + z32 . Then the weights of Q are indeed unique, but
not strong.

A simple analysis of the proof of Proposition 1 leads to the following obser-
vation valid also for order 2 weighted homogeneous polynomials defining isolated
singularities.

Proposition 2 ([Sai71, Korollar 1.7]) If a weighted homogeneous polynomial
P ∈ C[z1, . . . , zn] with strong weights defines an isolated singularity at 0, then there
are no other strong weights for P .
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Proof We repeat the proof of Proposition 1 to get the „cycle” zi11 z2, z
i2
2 z3, . . . , z

ik
k zj

of monomials appearing with non-zero coefficients in P and the corresponding linear
system 

i1w1 + w2 = 1
i2w2 + w3 = 1

...
...

ikwk + wj = 1

,

where this time we know only that i1, . . . , ik > 1, j ∈ {1, . . . , k − 1}, k > 2. Hence,
its determinant i1 . . . ij−1(ij . . . ik + (−1)k+j) may be zero if k + j ≡ 1(mod 2)
and ij = . . . = ik = 1. But if this is the case, then in P there appear the
monomials zjzj+1, . . . , zk−1zk, zkzj with non-zero coefficients, implying wj = . . . =
wk = 1

2 as the weights we consider are strong. Thus, we are left with the system{
i1w1 + w2 = . . . = ij−1wj−1 + wj = 1, wj = 1

2

}
, which is a triangular one. Hence,

the uniqueness of w1, . . . , wn follows. 2

Without the assumption that the weights are strong, the following holds „in
order 2”.

Proposition 3 (cf. [Sai71, the proof of Satz 1.3]) If a weighted homogeneous
polynomial P ∈ C[z1, . . . , zn] defines an isolated singularity at 0 and ordP = 2,
then there exists a biholomorphic change of coordinates Φ of Cn such that P ◦Φ is
still weighted homogeneous, but with unique and strong weights.

Proof We apply induction with respect to the number n of variables. For n = 1
the assertion is obvious. Let now P ∈ C[z1, . . . , zn], n > 2, define a weighted
homogeneous singularity. Let w1, . . . , wn be the weights of P . Assume that in P
there appears a monomial zjzk, for some j, k ∈ {1, . . . , n}, with a non-zero coefficient.
If j = k then clearly wj = 1

2 ; if j 6= k with wj 6 1
2 and wk 6 1

2 , then we also
immediately conclude that wj = wk = 1

2 . Hence, in these two cases the weights
wj , wk are already strong. Accordingly, assume now that j 6= k and e.g. wj > 1

2 . By
a permutation of the variables, we may arrange things so that j = 1, k = 2. Since
w1 >

1
2 , P depends only linearly on z1 and we may write

P (z1, . . . , zn) = z1(az2 + P0(z3, . . . , zn)) + P ′(z2, . . . , zn), a 6= 0.

Here, P0 also does not depend on z2 because P is weighted homogeneous; moreover
ordP0 > 1. If we change the coordinates in the following manner: t1 = z1, t2 = az2+
P0(z3, . . . , zn), t3 = z3, . . . , tn = zn, then we obtain a new weighted homogeneous
polynomial Q having the same weights w1, . . . , wn and of the form

Q(t1, . . . , tn) = t1t2 +Q′(t2, . . . , tn).

Now, we have the representation

Q(t1, . . . , tn) = t2(t1 +Q0(t2, . . . , tn)) +Q′′(t3, . . . , tn)
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and the substitution u1 = t1 +Q0(t2, . . . , tn), u2 = t2, . . . , un = tn leads to another
weighted homogeneous polynomial R having the same weights w1, . . . , wn and of
the form

R(u1, . . . , un) = u1u2 +R′(u3, . . . , un).

But now we can put w′1 := 1
2 , w

′
2 := 1

2 , and then both R and R′ are weighted
homogeneous with respect to w′1, w′2, w3, . . . , wn. Moreover, R′ defines an isolated
singularity in Cn−2. If we change coordinates: u1 = s1 − is2, u2 = s1 + is2,
u3 = s3, . . . , un = sn we obtain a weighted homogeneous polynomial

T (s1, . . . , sn) = s21 + s22 +R′(s3, . . . , sn)

for which the weights of the variables s1 and s2 are unique and strong. Induction
finishes the proof. 2

Remark A careful analysis of the above proof shows that, in order to guarantee the
existence of strong weights for P , one must only change these variables zi1 , . . . , zir
which appear in the quadratic form of P exclusively as zijzik , with max(wij , wik) >
1
2 . However, to be able to deduce the uniqueness of the weights, one must work
with all the variables appearing in the quadratic form of P . In both cases, all the
other variables remain essentially uninfluenced by this procedure. Moreover, wα
(α 6∈ {i1, . . . , ir}) are the same in all these coordinate systems.

We may sum up the above propositions in one theorem.

Theorem 1 Let P ∈ C[z1, . . . , zn] be a weighted homogeneous polynomial defining
an isolated singularity at 0.

1. If ordP > 3, then the weights of P are unique and strong (and, moreover, all
wi <

1
2).

2. If ordP = 2, then there exists a biholomorphic change of coordinates of Cn
such that P in these coordinates is weighted homogeneous with unique and
strong weights (and might be brought to the form P (s1, . . . , sn) = s21+. . .+s2k+
P ′(sk+1, . . . , sn), k > 0, where P ′ is weighted homogeneous and ordP ′ > 3).

3. If P has strong weights, then they are the only strong weights for P .

Remark Analyzing the proofs given, a careful reader might notice that Theorem
1 holds also for a weighted homogeneous polynomial with a non-isolated critical
point at 0, as long as this polynomial satisfies the assertion of Lemma 1 (that is, if
it is nearly convenient).

Example 2 As we saw in Example 1, the polynomial Q(z1, z2) := z1z2 + z32 has
unique, but weak, weights. Putting u1 = z1 + z22 , u2 = z2 we transform Q into the
form u1u2. Another change: s1 = u1 + u2, s2 = u1 − u2 leads to 1

4s
2
1 − 1

4s
2
2, which

is now a weighted homogeneous polynomial with unique and strong weights.
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3 Characterization of homogeneous and weighted
homogeneous isolated singularities

In this section we describe some known characterizations of homogeneous and
semi-homogeneous isolated singularities. To make things precise, let us start the
discussion with necessary definitions.

Definition 3 A function-germ f ∈ On is called a
::::::::::::
homogeneous (resp.

::::::::
weighted

:::::::::::
homogeneous)

::::::
isolated

::::::::::
singularity if f is a homogeneous (resp. weighted homoge-

neous) polynomial defining an isolated singularity at 0 ∈ Cn. Such germ f is called
a

::::::::::::::::
semi-homogeneous (resp.

::::::::::::::::::::::::
semi-weighted-homogeneous)

:::::::::
singularity if f = f0 + f ′,

where f0 (the
::::::::
principal

::::
part

::
of

::
f) is a homogeneous (resp. weighted homogeneous)

isolated singularity and every monomial appearing in f ′ with a non-zero coefficient
has its degree (resp. weighted degree) greater than the degree (resp. weighted degree)
of f0.

The most impressive description of the class of weighted homogeneous isolated
singularities was given by K. Saito in 1971.

Theorem 2 ([Sai71, Satz 4.1]) An isolated singularity f ∈ On is weighted
homogeneous in some system of coordinates if, and only if, f ∈ ( ∂f∂z1 , . . . ,

∂f
∂zn

)On.

We remark that the „only if” part of this theorem is easy and follows directly
from Euler’s formula for weighted homogeneous polynomials.

In singularity theory there are many numerical invariants in terms of which vari-
ous properties of isolated singularities (e.g. of topological, geometric or holomorphic
nature) can be expressed. The most important of these are perhaps:

:::
the

:::::::::::
multiplicity

:::::
m(f),

::
the

:::::::
Milnor

:::::::
number

:::::
µ(f) and

:::
the

:::::::
Tjurina

:::::::
number

:::::
τ(f). They can be defined

as follows:

m(f) = ord(f),

µ(f) = dimC On/( ∂f∂z1 , . . . ,
∂f
∂zn

)On,

τ(f) = dimC On/(f, ∂f∂z1 , . . . ,
∂f
∂zn

)On.

Using these invariants, we may reformulate Saito theorem.

Theorem 2’ An isolated singularity f ∈ On is weighted homogeneous in some
system of coordinates if, and only if, µ(f) = τ(f).

This result justifies the hope for, and inspires the search for, a possible charac-
terization of homogeneous and semi-homogeneous isolated singularities, one that
should also be expressed only in terms of the above-mentioned numerical invariants.
In recent years a number of papers concerning this topic have appeared. Xu and
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Yau in 1993 [XY93] managed to solve this problem for 2-dimensional isolated sin-
gularities, after that Lin and Yau [LY04], and Chen et al. [CLYZ11] extended the
first result to 3- and 4-dimensional isolated singularities, respectively. Since these
characterizations were similar, in 2006 Yau formulated the following conjecture (see
[LWYL06]):

Conjecture Let f ∈ On be an arbitrary isolated singularity. Then

1. µ(f) > (m(f)− 1)n, with equality if, and only if, f is semi-homogeneous.

Assume additionally that f is a weighted homogeneous isolated singularity. Then

2. µ(f) = (m(f)− 1)n if, and only if, there is a biholomorphic change of coor-
dinates in Cn which transforms f into a homogeneous polynomial (so that f
becomes a homogeneous isolated singularity in these new coordinates).

The first part of this general conjecture was proved by Yau and Zuo in [YZ12],
and the second part by the same authors in [YZ15]. Quite recently, Abderrahmane
[Abd15] gave another proof of this conjecture.

The aim of this elaboration is to indicate that the conjecture is a simple corollary
to a well-known theorem of multidimensional complex analysis (more specifically
– multiplicity theory of mappings). Moreover, we will give a more precise version
of the second part of the conjecture. In a similar way one can prove the result of
Furuya and Tomari [FT04] on the characterization of semi-weighted-homogeneous
isolated singularities.

Let us prepare the ground first.

4 Elements of multiplicity theory

Let F = (F1, . . . , Fn) : (Cn, 0) → (Cn, 0) be a holomorphic map having an
isolated zero at 0 ∈ Cn. In such a case F is a branched analytic cover, so for all y in
a dense open subset of a suitable neighbourhood of 0 the number of points in F−1(y)
is finite and independent of y. Hence, one may define the

::::::::
covering

::::::::::
multiplicity

:::
of

::
F

::
at

::
0 by

µc(F ) := #
{
F−1(y) : y – generic

}
.

A standard result in complex analytic geometry (see [Pal67], [Orl77, Thm. I.5.13],
[Tsi92, p. 148]) states that

µc(F ) = dimC On/(F1, . . . , Fn)On.

Hence, in the case where F = ∇f for an isolated singularity f , this gives (cf. page
16)

µ(f) = µc(∇f).
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Another well-known result on multiplicity is the following, dating back at least
to O. Zariski [Zar37], who proved it for polynomials (not a restrictive assumption)
using properties of multipolynomial resultants.

Theorem 3 ([TY78], [Tsi92,p.146], [AY83,p.181], [Chi89,p.112], [ATY94,
p. 37]) Let F = (F1, . . . , Fn) : (Cn, 0) → (Cn, 0) be a holomorphic map with an
isolated zero at 0 ∈ Cn. Let inF = (inF1, . . . , inFn) be the vector of the initial
forms of the mapping F , of degrees d1, . . . , dn, respectively. Then

1. µc(F ) > d1 · . . . · dn.

2. The equality in 1. holds if, and only if, 0 is an isolated zero of the system
inF .

Theorem 3 admits a simple generalization.

Theorem 4 ([TY78], [AY83, p. 184], [Chi89, p. 114]) Let F = (F1, . . . , Fn) :
(Cn, 0) → (Cn, 0) be a holomorphic map with an isolated zero at 0 ∈ Cn. Let
ω1, . . . , ωn be some fixed natural weights. Let inω F = (inω F1, . . . , inω Fn) be the
vector of the weighted initial forms of the mapping F , of weighted degrees d1, . . . , dn,
respectively. Then

1. µc(F ) > d1 · . . . · dn.

2. The equality in 1. holds if, and only if, 0 is an isolated zero of the system
inω F .

Let us remark that Theorem 4 follows from Theorem 3 by means of the simple
substitution Φ : z 7→ (zω1

1 , . . . , zωn
n ), which transforms the weighted inω F into the

homogeneous in Φ∗F .

5 Corollaries

Let us relate the theorems from the previous section to the Conjecture.

I. Conjecture, item 1, follows immediately from Theorem 3.

II. Conjecture, item 2 also follows from Theorem 3, and in a more precise form,
as we are about to see.

Theorem 5 Let f ∈ On be a weighted homogeneous isolated singularity. Then
µ(f) = (m(f)− 1)n if, and only if, there is a biholomorphic change of coordinates
in Cn which transforms f into a homogeneous polynomial. Moreover, such change
of coordinates may be needed only when ord f = 2 and all possible systems of weights
for f are weak.
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Proof If the equality holds, then, according to Theorem 3, f is semi-homogeneous.
Let m = m(f), then f = fm + fm+1 + . . . where each fi is homogeneous of degree
i, and fm is an isolated singularity. Since f is weighted homogeneous, fm also is,
with respect to the same weights. Now, if the weights of f are strong, then from
Proposition 2 applied to fm we infer that these weights must be 1

m , . . . ,
1
m . Hence,

fm+1 = fm+2 = . . . = 0 and f = fm is homogeneous. If the weights of f are
weak, then Proposition 1 implies that ord f = 2, and Proposition 3 supplies us with
a biholomorphic change of coordinates which makes f weighted homogeneous, with
strong weights. Since both, the Milnor number, and the multiplicity are invariants of
biholomorphisms, the equality still holds in this new system of coordinates. Hence,
we may apply the first part of the proof to conclude that f is now homogeneous. 2

III. In 2004, in Proc. AMS , Furuya and Tomari [FT04] proved the following theo-
rem, which is a direct consequence of Theorem 4.

Theorem 6 Let f ∈ On be an isolated singularity and let ω1, . . . , ωn be some fixed
natural weights. With respect to these weights, write f = fd+fd+1 + . . ., where fi is
a weighted homogeneous polynomial of weighted degree equal to i, and fd 6= 0. Then

1. µ(f) >
(
d
ω1
− 1
)
. . .
(
d
ωn
− 1
)
.

2. The equality holds in the above if, and only if, f is semi-weighted-homogeneous
with respect to the weights ω.
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