MATERIAŁY XV KONFERENCJI SZKOLENIOWEJ Z ANALIZY I GEOMETRII ZESPOLONEJ

1994

Łódź

str. 17

ON COEFFICIENT ESTIMATES IN A CLASS OF CARATHÉODORY FUNCTIONS WITH POSITIVE REAL PART

J. Fuka (Praga), Z.J. Jakubowski (Łódź)

1. This article belongs to the cycle of papers ([4], [5], [6]) where different classes of functions defined by conditions on the unit circle were studied. The results of papers [5], [6] are generalized. Omitted proofs and other new results will be published in [7]. As usual, we shall denote by \mathbb{C} the complex plane, by $\mathbb{D} = \{z \in \mathbb{C}; |z| < 1\}$ the unit disc, by $\mathbb{T} = \{z \in \mathbb{C}; |z| = 1\}$ the unit circle. In our further considerations, we shall treat \mathbb{T} as the subset of \mathbb{C} with the induced topology on the one hand, on the other hand, as a set homeomorphic to \mathbb{T} , namely, as the subset $\langle -\pi, \pi \rangle$ of the real line \mathbb{R} , endowed with the factor topology $\mathbb{R}/2\pi\mathbb{Z}$ where \mathbb{Z} is the set of integers. Therefore we shall sometimes treat the function $f(e^{i\Theta}): \mathbb{T} \to \mathbb{C}$ as a function $f(t): \langle -\pi, \pi \rangle \to \mathbb{C}$.

Let P denote the class of functions of the form

(1)
$$p(z) = 1 + q_1 z + \ldots + q_n z^n + \ldots$$

holomorphic in the unit disc \mathbb{D} with $\operatorname{Re} p(z) > 0$ in $\mathbb{D}([2])$.

Let us recall some properties of real parts of functions from P, which will be essential in what follows:

(a) Every function $\operatorname{Re} p(z)$, $p \in P$, has the Poisson representation by a unique positive measure ([3], p. 21–24, [8], p. 11–12)

(2)
$$\operatorname{Re} p(z) = \int_{-\pi}^{\pi} \operatorname{Re} \frac{e^{it} + z}{e^{it} - z} d\mu(t)$$

where $d\mu(t) \ge 0$ and $\int_{-\pi}^{\pi} d\mu(t) = 1$; conversely, every function p holomorphic in \mathbb{D} whose real part is given by (2), where $d\mu(t) \ge 0$ and $\int_{-\pi}^{\pi} d\mu(t) = 1$, and for which $\operatorname{Im} p(0) = 0$, is lying in P.

b) Let $d\mu(t) = f(t)\frac{dt}{2\pi} + d\sigma(t)$ be the Lebesgue decomposition of the representing measure μ with respect to the normalized Lebesgue measure $\frac{dt}{2\pi}$ on $\langle -\pi, \pi \rangle$, i.e. $\int_{-\pi}^{\pi} f(t)dt < \infty$, $f \ge 0$ almost everywhere (a.e.) on $\langle -\pi, \pi \rangle$ with respect to $\frac{dt}{2\pi}$ and $d\sigma$ is singular. Then $\operatorname{Re} p(z)$ has nontangential limits a.e. on $\langle -\pi, \pi \rangle$ and

(3)
$$\operatorname{Re} p(e^{i\theta}) = f(e^{i\Theta})$$
 a. e. on $\langle -\pi, \pi \rangle$

(see [8], Chapter 1, Th. 5.3).

In [5] the following subclass $\tilde{P}(B,b;\alpha)$, $0 \leq b < 1$, b < B, $0 < \alpha < 1$, of P was introduced: $p \in \tilde{P}(B,b;\alpha)$ if there exists an open arc $I_{\alpha} = I_{\alpha}(p)$ of \mathbb{T} of length $2\pi\alpha$ such that

(4)
$$\lim_{\substack{z \to z_0, \\ z \in \mathbb{D}}} \operatorname{Re} p(z) \ge B \quad \text{for each } z_0 \in I_\alpha$$

and

(5)
$$\lim_{\substack{z \to z_0, \\ z \in \mathbb{D}}} \operatorname{Re} p(z) \ge b \quad \text{for each } z_0 \in \mathbb{T} \setminus \bar{I}_{\alpha}.$$

Among other results, the following properties of $\tilde{P}(B, b; \alpha)$ were proved in [5]: 1) a necessary and sufficient condition on the parameters B, b, α for $\tilde{P}(B, b; \alpha)$ to be nonvoid was given; 2) $\tilde{P}(B, b; \alpha)$ is compact in the topology given by the uniform convergence on compact subsets of \mathbb{D} ; 3) $\tilde{P}(B, b; \alpha)$ is not convex.

In this paper we generalize all these results to the situation where arcs are replaced by closed measurable subsets of \mathbb{T} .

We start with the following reformulation of conditions (4), (5). The generalization is motivated by

Lemma 1. Let $I_{\alpha} \subset \mathbb{T}$ be a given open arc and let $p \in P$. The following conditions are equivalent:

(c) p fulfills conditions (4) and (5),
(d) p fulfills the conditions:

(6)
$$\operatorname{Re} p(e^{i\theta}) \ge B$$
 a. e. on I_{α} ,

(7)
$$\operatorname{Re} p(e^{i\theta}) \ge b$$
 a. e. on $\mathbb{T} \setminus \overline{I}_{\alpha}$.

Here $\operatorname{Re} p(e^{i\Theta})$ are nontangential limits of $\operatorname{Re} p$ which exist a.e. on \mathbb{T} by (b).

Now, we are in a position to give our main definition.

Definition 1. Let $0 \le b < 1$, b < B, $0 < \alpha < 1$, be fixed real numbers and F a given closed subset of the unit circle \mathbb{T} of Lebesgue measure $2\pi\alpha$. For each $\tau \in \langle -\pi, \pi \rangle$, denote by $F_{\tau} = \{\xi \in \mathbb{T}; e^{-i\tau}\xi \in F\}$ the set arising by rotation of F through the angle τ . Denote by $P(B, b, \alpha; F)$ the class of functions $p \in P$ satisfying the following conditions: there exists $\tau = \tau(p) \in \langle -\pi, \pi \rangle$ such that

(8)
$$\operatorname{Re} p(e^{i\Theta}) \ge B$$
 a.e. on F_{τ}

and

(9)
$$\operatorname{Re} p(e^{i\Theta}) \ge b$$
 a.e. on $\mathbb{T} \setminus F_{\tau}$.

It follows directly from Definition 1 that, for B > 1, the class $P(B, b, \alpha; F)$ does not contain the function $p_0(z) \equiv 1$, $z \in \mathbb{D}$. If $B \leq 1$, then, clearly, $p_0 \in P(B, b, \alpha; F)$ for arbitrary admissible values of the parameters b, α and the set F.

In our further considerations, if it is not otherwise stated, we shall always assume that B, b, α, F and τ fulfill the conditions from Definition 1.

2. We have

Theorem 1. If $P(B, b, \alpha; F) \neq \emptyset$, then

(10)
$$1 \ge \alpha B + (1 - \alpha)b.$$

Proof. Let $p \in P(B, b, \alpha; F)$. So, there exists $\tau = \tau(p) \in \langle -\pi, \pi \rangle$ such that (8) and (9) are fulfilled. Let $\omega(\cdot; F_{\tau})$ be the harmonic measure of the set F_{τ} with respect to \mathbb{D} , i.e.

(11)
$$\omega(z; F_{\tau}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_{F_{\tau}}(e^{it}) \operatorname{Re} \frac{e^{it} + z}{e^{it} - z} dt$$

where $\chi_{\mathcal{A}}$ is the characteristic function of the set \mathcal{A} . Clearly, $0 < \omega(z; F_{\tau}) < 1$ in \mathbb{D} and, by (3), $\omega(e^{it}; F_{\tau}) = 1$ a.e. on F_{τ} and $\omega(e^{it}; F_{\tau}) = 0$ on $\mathbb{T} \setminus F_{\tau}$. Put

$$u_{\tau}(z) = b + (B - b)\omega(z; F_{\tau}).$$

Then $u_{\tau}(z) = B$ a.e. on F_{τ} and $u_{\tau}(z) = b$ on $\mathbb{T} \setminus F_{\tau}$. Since, by (8) and (9), Re $(p(e^{i\Theta}) - u_{\tau}(e^{i\Theta})) \ge 0$ a.e. on \mathbb{T} , we have, for each $z \in \mathbb{D}$, by (2) and (3),

$$\operatorname{Re} p(z) = \int_{-\pi}^{\pi} \operatorname{Re} \frac{e^{it} + z}{e^{it} - z} d\mu(t) \ge \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re} p(e^{it}) \operatorname{Re} \frac{e^{it} + z}{e^{it} - z} dt$$
$$\ge \frac{1}{2\pi} \int_{F_{\tau}} B \operatorname{Re} \frac{e^{it} + z}{e^{it} - z} dt + \frac{1}{2\pi} \int_{\mathbb{T} \setminus F_{\tau}} b \operatorname{Re} \frac{e^{it} + z}{e^{it} - z} dt = u_{\tau}(z),$$

hence

(12)
$$\operatorname{Re} p(z) \ge b + (B - b)\omega(z; F_{\tau}), \qquad z \in \mathbb{D}.$$

For z = 0, we obtain, with respect to (1) and $\omega(0; F_{\tau}) = \alpha$, inequality (10).

Remark 1. Inequality (12) corresponds to the well-known two-constant theorem for bounded holomorphic functions ([1], p. 39). **Theorem 2.** Let condition (10) hold. Then, for each $\tau \in \langle -\pi, \pi \rangle$, there exists a function $p_{F_{\tau}} \in P(B, b, \alpha; F)$ such that $\operatorname{Re} p_{F_{\tau}}(e^{i\Theta}) = B$ a.e. on F_{τ} and $\operatorname{Re} p_{F_{\tau}}(e^{i\Theta}) = b$ a.e. on $\mathbb{T} \setminus F_{\tau}$.

Proof. Since the disc \mathbb{D} is simply connected, therefore the function

(13)
$$h(z; F_{\tau}) = \omega(z; F_{\tau}) + i\omega^*(z; F_{\tau}),$$

where ω^* , $\omega^*(0) = 0$, is the harmonic conjugate of $\omega(z; F_{\tau})$ is, by the monodromy principle, holomorphic in \mathbb{D} for each $\tau \in \langle -\pi, \pi \rangle$.

Let the equality in (10) hold. Then

(14)
$$p_{F_{\tau}}(z) = b + (B - b)h(z; F_{\tau}), \qquad z \in \mathbb{D},$$

has the required property.

If $B\alpha + b(1-\alpha) < 1$, then the function $\tilde{p}_{F_{\tau}}(z) = b + (B-b)h(z; F_{\tau}), z \in \mathbb{D}$, fulfills (8) and (9) but does not belong to $P(B, b, \alpha; F)$ since $\tilde{p}_{F_{\tau}}(0) = B\alpha + b(1-\alpha) < 1$. So, it is natural to achieve the required normalization by adding a proper multiple of $\frac{e^{i\gamma}+z}{e^{i\gamma}-z}$, γ real. Since on \mathbb{T} we have $\operatorname{Re} \frac{e^{i\gamma}+z}{e^{i\gamma}-z} = 0$ a.e., therefore, clearly,

$$p_{F_{\tau}}(z) = \tilde{p}_{F_{\tau}}(z) + (1-\eta) \frac{e^{i\gamma} + z}{e^{i\gamma} - z}, \qquad z \in \mathbb{D},$$

where

(15)
$$\eta = B\alpha + b(1 - \alpha),$$

is the required function.

Corollary 1. The class $P(B, b, \alpha; F)$ is nonvoid if and only if inequality (10) holds. If in (10) the equality holds, then

$$P(B, b, \alpha; F) = \{ p_{F_{\tau}}; \ \tau \in \langle -\pi, \pi \rangle \}$$

where $p_{F_{\tau}}$ is function (14).

Theorem 3. The class $P(B, b, \alpha; F)$, where B, b, α satisfy condition (10), is compact in the topology given by the uniform convergence on compact subsets of \mathbb{D} .

Since $P(B, b, \alpha; F) \subset P$ and the class P is compact, it suffices to prove that $P(B, b, \alpha; F)$ is closed in P. In the proof of this fact one uses some properties of the harmonic measure $\omega(\cdot; F)$ of the set F and inequality (12). For details, see [7].

3. In this section we shall study sets $\mathbb{E} P(B, b, \alpha; F)$ and supp $P(B, b, \alpha; F)$ of extreme points and support points of $P(B, b, \alpha; F)$, respectively ([9], p. 44, p. 91).

For this purpose, we denote, for a fixed $\tau \in \langle -\pi, \pi \rangle$, $P(B, b, \alpha; F, \tau)$ - the set of all functions from $P(B, b, \alpha; F)$ satisfying (8) and (9) on F_{τ} . Clearly, $P(B, b, \alpha; F, \tau)$ is convex, compact and

(16)
$$P(B,b,\alpha;F) = \bigcup_{\tau \in (-\pi,\pi)} P(B,b,\alpha;F,\tau).$$

Proposition 1. (i) $P(B, b, \alpha; F, \tau) = \{p_{F_{\tau}} + (1 - \eta)p; p \in P\}$ where $p_{F_{\tau}}$ is function (14) and η is given by (15).

(ii) For every τ , the correspondence $p \to p_{F_{\tau}} + (1-\eta)p$ between the classes P and $P(B, b, \alpha; F, \tau)$ is one-to-one.

(*iii*) $p \in P(B, b, \alpha; F, \tau_1)$ if and only if $\tilde{p}(z) = p(e^{i\tau}z) \in P(B, b, \alpha; F, \tau_1 + \tau)$.

Now, denote by $\mathbb{E}(B, b, \alpha; F, \tau)$ the set of all $p(z; \gamma, F_{\tau}) \in P(B, b, \alpha; F, \tau)$ of the form

(17)
$$p(z;\gamma,F_{\tau}) = b + (B-b)(z;F_{\tau}) + (1-\eta)\frac{e^{i\gamma}+z}{e^{i\gamma}-z}, \quad \gamma - \text{real}, \quad z \in \mathbb{D},$$

and by $\mathcal{S}(B, b, \alpha; F, \tau)$ the set of all $s(z; F_{\tau}) \in P(B, b, \alpha; F, \tau)$ of the form

(18)
$$s(z; F_{\tau}) = b + (B - b)h(z; F_{\tau}) + (1 - \eta) \sum_{k=1}^{m} \lambda_k \frac{1 + x_k z}{1 - x_k z}, \qquad z \in \mathbb{D},$$

where $\lambda_k \ge 0$, $\sum_{k=1}^{m} \lambda_k = 1$ and $|x_k| = 1$; m = 1, 2, ...From Proposition 1, the description of extreme points and support points of P, given in [9] (p. 48 and p. 94), and from (16) we immediately obtain

Corollary 2. For arbitrary admissible B, b, α, F, τ , we have

(19)
$$\mathbb{E}P(B, b, \alpha; F, \tau) = \mathbb{E}(B, b, \alpha; F, \tau),$$

(20)
$$\operatorname{supp} P(B, b, \alpha; F, \tau) = \mathcal{S}(B, b, \alpha; F, \tau),$$

(21)
$$\mathbb{E}P(B,b,\alpha;F) \subset \bigcup_{\tau \in \langle -\pi,\pi \rangle} \mathbb{E}(B,b,\alpha;F,\tau).$$

Theorem 4. Let $p \in P(B, b, \alpha; F)$ have expansion (1) in \mathbb{D} . Then, for n = $1, 2, \ldots,$

(22)
$$|q_n| \le 2\left[(B-b)\frac{1}{2\pi} \Big| \int_F e^{-int} dt \Big| + 1 - \eta \right].$$

This estimate is sharp and is attained only for functions (17) where $\gamma =$ $-\frac{1}{n}\left(\arg\int_{F_{\tau}}e^{-int}dt+2k\pi\right),\ k\in\mathbb{Z}\ (for\ \int_{F_{\tau}}=0,\ we\ put\ \arg\int_{F_{\tau}}=0).$

Proof. Since it is sufficient to verify estimate (22) for extreme points of $P(B, b, \alpha; F)$ (see e.g. [9], Th. 4.6, p. 45), by (21) we have only to make ourselves sure that the estimate holds for all functions of form (17) for all $\tau \in \langle -\pi, \pi \rangle$ and is attained on some of them. So, we have only to write the Taylor expansion of functions (17). Since

$$\frac{e^{it}+z}{e^{it}-z} = 1 + 2\sum_{n=1}^{\infty} e^{-int} z^n, \qquad z \in \mathbb{D},$$

and the series converges uniformly in $\langle -\pi, \pi \rangle$ for $|z| < \rho < 1$, we can integrate term by term and obtain by elementary calculations (cf. (11), (13), (15), (17))

$$p(z;\gamma,F_{\tau}) = 1 + 2\sum_{n=1}^{\infty} \left[(B-b) \int_{F_{\tau}} e^{-int} dt + (1-\eta)e^{-in\gamma} \right] z^n,$$

so,

$$q_n = 2\left[(B-b)\frac{1}{2\pi} \int_{F_{\tau}} e^{-int} dt + (1-\eta)e^{-in\gamma} \right].$$

Denoting $\varphi_{\tau} = \arg \int_{F_{\tau}} e^{-int} dt$ if $\int_{F} e^{-int} dt \neq 0$ and putting $\varphi_{\tau} = 0$ in the opposite case, we have

$$q_n = 2\left[(B-b)\frac{1}{2\pi} \Big| \int_{F_\tau} e^{-int} dt \Big| + (1-\eta)e^{-i(n\gamma+\varphi_\tau)} \right] e^{i\varphi_\tau},$$

 $\mathrm{so},$

$$\begin{aligned} |q_n| &= 2 \Big| (B-b) \frac{1}{2\pi} \Big| \int_{F_\tau} e^{-int} dt \Big| + (1-\eta) e^{-i(n\gamma + \varphi_\tau)} \Big| \\ &= 2 \Big| (B-b) \frac{1}{2\pi} \Big| \int_F e^{-int} dt \Big| + (1-\eta) e^{-i(n\gamma + \varphi_\tau)} \Big|. \end{aligned}$$

Since the first term of the sum is nonnegative, we obtain estimate (22).

Passing suitably to the limits, we obtain from (22) the well-known coefficient estimates in the classes P_b of Carathéodory (functions ([10]) of order b and in P ([2]).

4. Next, we consider

Definition 1. Let $0 \le b < 1$, b < B, $0 < \alpha < 1$, be fixed real numbers. Denote by $P(B, b, \alpha)$ the class of functions $p \in P$ such that there exists a closed subset F of \mathbb{T} of Lebesgue measure $2\pi\alpha$ such that $p \in P(B, b, \alpha; F)$.

It follows directly from Definition 2 that

(23)
$$P(B,b,\alpha) = \bigcup_{F} P(B,b,\alpha;F)$$

where $F \subset \mathbb{T}$ satisfies the conditions mentioned above. Our main theorem is the following

Theorem 5. Let $p \in P(B, b, \alpha)$ have expansion (1) in \mathbb{D} . Then, for n = 1, 2, ...

(24)
$$|q_n| \le 2\left[\frac{B-b}{\pi}\sin\alpha\pi + 1 - \eta\right].$$

Estimate (24) is sharp and is attained only on the function $p^*(z) = p(\varepsilon z; F)$, $|\varepsilon| = 1, z \in \mathbb{D}$, where

$$F = F_n = \bigcup_{k=1}^n F_n^k, \qquad but \quad F_n^k = \left\{ z \in \mathbb{T}; \ z = e^{\frac{2k\pi i}{n}} e^{i\rho}, \quad \frac{-\alpha\pi}{n} \le \rho \le \frac{\alpha\pi}{n} \right\},$$

and so,

(25)
$$p(z;F) = b + \frac{B-b}{2\pi} \sum_{k=1}^{n} \int_{(-\alpha+2k)\pi/n}^{(\alpha+2k)\pi/n} \frac{e^{it}+z}{e^{it}-z} dt + (1-\eta) \frac{1+z}{1-z}, \qquad z \in \mathbb{D}.$$

We give a rough sketch of the proof only; for details, see [7]. Let $p \in P(B, b, \alpha)$ have expansion (1) in \mathbb{D} . By (22), (23) and in view of the rotation invariance of the Lebesgue measure on \mathbb{T} , we easily obtain

$$|q_n| \le \frac{B-b}{\pi}Q_n + 2(1-\eta), \qquad n = 1, 2, \dots,$$

where

$$Q_n = \sup_F \int_F \cos nt dt$$

and the supremum is taken over all closed subsets F of \mathbb{T} having the Lebesgue measure $2\pi\alpha$. The following lemma is the clue to the proof of Theorem 5 (for the proof of the lemma, see [7]).

Lemma 2. Let $a, b \in \mathbb{R}$ and let $E \subset \langle a, b \rangle$ be a measurable subset of the interval $\langle a, b \rangle$ and f a bounded nondecreasing function on $\langle a, b \rangle$. Then

$$\int_{a}^{a+m(E)} f(t)dt \leq \int_{E} f(t)dt \leq \int_{b-m(E)}^{b} f(t)dt.$$

This lemma is used for the sets $F \cap I_k$ and $F \cap J_k$ where I_k and J_k are intervals, the function $\cos ine$ increases or decreases, respectively. After computations one obtains the following estimate of Q_n :

$$Q_n \le \sup\left\{\frac{2}{n}\sum_{n=1}^{\infty}\sin n\pi\alpha_k\right\}$$

where the supremum is taken over all systems $(\alpha_1, \ldots, \alpha_n)$ such that $0 \le \alpha_k \le \min(\frac{1}{n}, \alpha)$ and $\sum_{k=1}^n \alpha_k = \alpha$. Finally, the concavity of $\sin x$ on $[0, \pi]$ gives result (29).

The form of the extremal functions is a consequence of the form of the set F shown in Theorem 5 and follows from formula (17). Since $P(B, b, \alpha; F_1 \cup F_2) = P(B, b, \alpha; F_1)$ for an arbitrary closed set F_1 and an arbitrary set F_2 of Lebesgue measure 0 and such that $F_1 \cup F_2$ is closed, therefore, for a fixed n, only function (25) is the function realizing the maximum of $|q_n|$ in the class $P(B, b, \alpha)$.

From Definition 1 and 2, Lemma 1 and Theorem 5 we get

Corollary 3. Let $p \in \tilde{P}(B,b;\alpha)$ have expansion (1) in \mathbb{D} . Then, for $n = 1, 2, \ldots$,

(26)
$$|q_n| \le 2\left[\frac{B-b}{\pi}\sin\alpha\pi + 1 - \eta\right].$$

Remark 2. Estimate (26) for n = 1 is sharp. For n = 2, 3, ..., it is not sharp because function (25) belongs to the class $P(B, b, \alpha)$ but not to $\tilde{P}(B, b; \alpha)$. The sharp estimate in the class $\tilde{P}(B, b; \alpha)$ for n = 2, 3, ... is ([6])

$$|q_n| \le 2\left[\frac{B-b}{n\pi}|\sin n\alpha\pi| + 1 - \eta\right].$$

The estimate can also be obtained directly from (22).

References

- 1. L.V. Ahlfors, Conformal invariants: Topics in geometric function theory, MGraw-Hill, New York, 1973.
- C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstanten positiven harmonischen Funktionen, Rend. Circ. Math. Palermo 32 (1911), 193–217.
- 3. P.L. Duren, Univalent functions, Grundlehren der matematischen Wissenschaften 259 (1983).
- J. Fuka, Z.J. Jakubowski, On certain subclasses of bounded univalent functions, Ann. Polon. Math. 55 (1991), 109–115; Proc. of the XI-th Instructional Conf. on the Theory of Extremal Problems (in Polish), Łódź, 1990, 20–27.
- _____, A certain class of Carathéodory functions defined by conditions on the unit circle, in: Current Topics in Analytic Function Theory, World Sci. Publ. Company (w druku); Proc. of the XIII-th Instructional Conf. on the Theory of Extremal Problems (po polsku), (1992), Łódź; Some results from the theory of extremal problems, 5-th Intern. Conf. on Complex Analysis, Varna, 15–21.09.1991, Summaries, 1991, 11, 9–13.
- _____, On extreme points of some subclasses of Carathéodory functions, Czechoslovak Akad. Sci., Math. Inst., Preprint 72 (1992), 1–9.
- 7. _____, On some applications of a harmonic measure in the geometric theory of analytic functions, Math. Bohemica (to appear).
- 8. J.B. Garnet, Bounded analytic functions, Academie Press, 1981.
- 9. D.J. Hallenbeck, T.H. MacGregor, *Linear problems and convexity techniques in gemoteric function theory*, Pitman, Boston–London–Melbourne, 1982.
- 10. M.S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.

O oszacowaniach współczynników w pewnej klasie funkcji Carathéodory'ego o części rzeczywistej dodatniej

Streszczenie. Niech *P* oznacza znaną klasę funkcji $p(z) = 1 + q_1 z + ...$ holomorficznych w kole jednostkowym \mathbb{D} i spełniających warunek $\operatorname{Re} p(z) > 0$ w \mathbb{D} . Niech $0 \leq b < 1, b < B, 0 < \alpha < 1$ będą ustalonymi liczbami, zaś *F* danym domkniętym podzbiorem okręgu jednostkowego \mathbb{T} o mierze Lebesgue'a $2\pi\alpha$. Dla każdego $\tau \in \langle -\pi, \pi \rangle$ oznaczmy przez F_{τ} zbiór { $\xi \in \mathbb{T}$; $e^{-i\tau}\xi \in F$ }. Niech $\tilde{P}(B,b;\alpha)$ oznacza klasę funkcji $p \in P$ spełniających warunek: istnieje $\tau \in \langle -\pi, \pi \rangle$ takie, że $\operatorname{Re} p(e^{i\Theta}) \geq B$ prawie wszędzie na F_{τ} oraz $\operatorname{Re} p(e^{i\Theta}) \geq b$ prawie wszędzie na $T \setminus F_{\tau}$.

W pracy zbadano podstawowe własności klasy $\tilde{P}(B, b; \alpha)$. Podano też oszacowania modułu współczynników w rodzinie $P(B, b, \alpha) = \bigcup_F \tilde{P}(B, b; \alpha)$. Pełny tekst pracy, w tym pominięte dowody twierdzeń, ukaże się w [7]. Otrzymane wyniki wchodzą w skład cyklu prac [4], [5], [6].

Bronisławów, 11–15 stycznia, 1993 r.