MATERIAŁY XV KONFERENCJI SZKOLENIOWEJ Z ANALIZY I GEOMETRII ZESPOLONEJ

1994 Łódź str. 25

THE PROBLEM OF CONVEXITY AND COMPACTNESS OF SOME CLASSES OF CARATHÉODORY FUNCTIONS

J. Fuka (Praga), Z.J. Jakubowski (Łódź)

1. The article belongs to the cycle of papers [1]-[5], where different classes of functions defined by conditions on the unit circle \mathbb{T} were studied. The results from [6] are completed. As usual, we shall denote by \mathbb{C} the complex plane, by $\mathbb{D} = \{z \in \mathbb{C}; |z| < 1\}$ the unit disc, by $\mathbb{T} = \{z \in \mathbb{C}; |z| = 1\}$ the unit circle.

Let P denote the class of functions of the form

(1)
$$p(z) = 1 + q_1 z + \ldots + q_n z^n + \ldots$$

holomorphic in \mathbb{D} with $\operatorname{Re} p(z) > 0$ for $z \in \mathbb{D}$ and, for a given set $F \subset \mathbb{C}$, let $F_{\tau} = \{\xi \in \mathbb{C}; e^{-i\tau}\xi \in F\}$ be the set arising by rotation of F through the angle τ .

Definition 1 (see [2], [3], [4]). Let $0 \le b < 1$, b < B, $0 < \alpha < 1$ be fixed real numbers.

a) Let $F \subset \mathbb{T}$ be a closed set of Lebesgue measure $2\pi\alpha$. By $P(B, b, \alpha; F)$ we denote the class of functions $p \in P$ satisfying the following conditions: there exists $\tau = \tau(p) \in \langle -\pi, \pi \rangle$ such that

$$\operatorname{Re} p(e^{i\theta}) \ge B$$
 a. e. on F_{τ}

and

$$\operatorname{Re} p(e^{i\theta}) \ge b \quad \text{a. e. on } \mathbb{T} \backslash F_{\tau}.$$
25

b) By $P(B, b, \alpha)$ we denote the class of functions $p \in P$ such that there exists a closed set $F = F(p), F \subset \mathbb{T}$, of Lebesgue measure $2\pi\alpha$ such that

(2)
$$\operatorname{Re} p(e^{i\theta}) \ge B$$
 a. e. on F

and

(3)
$$\operatorname{Re} p(e^{i\theta}) \ge b$$
 a. e. on $\mathbb{T} \setminus F$.

c) For a fixed $\tau \in \langle -\pi, \pi \rangle$, by $P(B, b, \alpha; F, \tau)$ we denote the set of all functions from $P(B, b, \alpha; F)$ satisfying (2) and (3) on F_{τ} and $\mathbb{T} \setminus F_{\tau}$, respectively.

d) By $P(B, b, \alpha)$ we denote class of functions $p \in P$ such that there exists an open arc $I = I(p) \subset \mathbb{T}$ of Lebesgue measure $2\pi\alpha$ such that (2) and (3) are fulfilled for $F = \overline{I}$.

e) Let $F \subset \mathbb{T}$ be a fixed closed set of Lebesgue measure $2\pi\alpha$. By $\check{P}(B, b, \alpha; F)$ we denote the class of functions $p \in P$ fulfilling (2) and (3).

In paper [2] (Th. 3; see also [4], L.1) it was proved that the class $\tilde{P}(B, b, \alpha)$ is compact in the topology given by the uniform convergence on compact subsets of \mathbb{D} , but it is not convex (Th. 5). On the other hand, each class $\check{P}(B, b, \alpha; F)$, especially $\check{P}(B, b, \alpha; \bar{I})$ (see e.g. [3], Th. 6 and [4] L.1) is convex. The class $P(B, b, \alpha; F, \tau)$ defined in Def. 1 (c) are convex and compact ([4], part 3) and the classes $P(B, b, \alpha; F)$ are also compact ([4], part 3). In this paper we shall discuss the problem of convexity and connectedness for the classes $P(B, b, \alpha; F)$ and the problem of convexity and compactness for the class $P(B, b, \alpha)$.

2. In the sequel, we denote by l(A) the normalized Lebesgue measure on $\mathbb{T}(l(\mathbb{T}) = 1)$. We shall need the following

Lemma 1. Let $F \subset \mathbb{T}$ be a closed set, $l(F) = \alpha$, $0 < \alpha < 1$. Then for each $\tau \in \langle -\pi, \pi \rangle$, there exists $\delta > 0$ such that $l(F_{\tau+h} \cap F_{\tau}) < l(F_{\tau})$ for each h, $0 < |h| < \delta$.

Proof. Without loss of generality we can choose $\tau_0 = 0$ and F_0 to be perfect (because the set of isolated points of F_0 is countable and hence a set of Lebesgue measure zero). Denote by \mathbb{D}_{F_0} the set of density points of F_0 (i.e. $\xi \in \mathbb{D}_{F_0}$ if and only if $\lim_{r\to 0} \frac{l(F_0 \cap B(\xi, r))}{2r} = 1$ where $B(\xi, r)$ is the arc \mathbb{T} with centre at the point ξ and $l(B(\xi, r)) = 2r$. Then (see [7], Exercise 11, p. 177) $l(\mathbb{D}_{F_0}) = l(F_0) = \alpha > 0$. Hence each interval containing a point of F_0 contains a point of \mathbb{D}_{F_0} . Denote $G_0 = \mathbb{T} \setminus F_0$, so $l(G_0) = 1 - l(F_0) = 1 - \alpha > 0$. G_0 is an open subset of \mathbb{T} , hence G_0 is the sum of a nonvoid finite or countable family of mutually disjoint open arcs $G_i \subset \mathbb{T}$. Let $l(G_{i_0}) \ge l(G_i)$ for every i and put $\delta = l(G_{i_0})$. The endpoints ξ_0, ξ_1 of G_{i_0} are lying in F_0 . So, by rotating F_0 through any angle h, $|h| < \delta$, $G_{i_0} \cap F_0$ contains ξ_0 and ξ_1 , and so, in any case, a point $\xi \in \mathbb{D}_{F_0}$ and an arc $B(\xi, r_0)$. Take $0 < r < r_0$ such that $l(F_0 \cap B(\xi, r)) > \frac{1}{2}l(B(\xi, r)) = r$. Then $F_0 \cap F_h \subset F_0 \setminus (F_0 \cap B(\xi, r))$, so $l(F_0 \cap F_h) \le l(F_0) - r < l(F_0)$.

Theorem 1. $P(B, b, \alpha; F)$ is not convex.

Proof. By Theorem 2 of [6] (this volume, p. 17), there exists a non-constant function $p \in P(B, b, \alpha; F)$ such that $\operatorname{Re} p(e^{i\Theta}) = B$ a.e. on F, $\operatorname{Re} p(e^{i\Theta}) = b$

on $\mathbb{T}\backslash F$ (cf. [4], (12) and [6], Th. 2). Take $0 < \tau < \min(\alpha, 1 - \alpha)$ and define $p_{\tau}(z) = p^{-2\pi i \tau} z), z \in \mathbb{D}$. Obviously, $p_{\tau} \in P(B, b, \alpha; F, \tau)$. Join p, p_{τ} by the segment $p_{\lambda} = \lambda p_{\tau} + (1 - \lambda)p, 0 \le \lambda \le 1$. Clearly, $p_{\lambda}(0) = 1$. One has $\operatorname{Re} p_{\lambda}(\xi) \le \lambda b + (1 - \lambda)B < B$ on $\mathbb{T}\backslash F_{\tau}$ for $\lambda > 0$ and $\operatorname{Re} p_{\lambda}(\xi) \le \lambda B + (1 - \lambda)b < B$ on $\mathbb{T}\backslash F$ for $\lambda < 1$. So, only a.e. on $F_{\tau} \cap F$ $\operatorname{Re} p_{\lambda}(\xi) \ge B$ can be fulfilled. By Lemma 1, there exists some $\delta = \delta(F) > 0$ such that $l(F \cap F_h) < l(F)$ for each $h, |h| < \delta$. Hence, for each $\lambda \in (0, 1), p_{\lambda}$ does not belong to $P(B, b, \alpha; F)$.

Theorem 2. $P(B, b, \alpha; F)$ is arcwise connected (and thus connected).

Proof. Let $p_1, p_2 \in P(B, b, \alpha; F)$. Then there exists $\tau_1, \tau_2 \in \langle -\pi, \pi \rangle$ such that $p_k \in P(B, b, \alpha; F, \tau_k), k = 1, 2$. Since the classes $P(B, b, \alpha; F, \tau)$ are convex, we can join p_1, p_2 by a segment with $p_{F_{\tau_1}} + 1 - \eta, p_{F_{\tau_2}} + 1 - \eta$, respectively, and then $p_{F_{\tau_1}} + 1 - \eta$ with $p_{F_{\tau_2}} + 1 - \eta$ by the arc $\tau \to p_{F_{\tau}} + 1 - \eta, \tau_1 \leq \tau \leq \tau_2$ (cf. [4], Remark 2).

Remark 1. In the case $B \leq 1$, the assertion of Theorem 2 is obvious because $p(z) \equiv 1, z \in \mathbb{D}$, belongs to $P(B, b, \alpha; F, \tau)$ for each $\tau \in \langle -\pi, \pi \rangle$.

Remark 2. All the properties of the class $P(B, b, \alpha; F)$ which we have examined up to now (i.e. compactness, convexity and connectedness) require non-trivial means from real analysis for their proofs, but can be proved almost trivially if we restrict our attention to the classes $P(B, b, \alpha; F, \tau)$. In this context, the following properties can be of some interest.

Lemma 2. For each $\tau \in \langle -\pi, \pi \rangle$, we have

$$\lim_{h \to 0} l(F_{\tau+h} \cap F_{\tau}) = l(F_{\tau}).$$

Proof. We can suppose $\tau = 0$ and write $F_{\tau} = F_0$. Since $\chi_{F_h \cap F_0} = \chi_{F_h} \chi_{F_0}$, we have

$$l(F_0) - l(F_f \cap F_0) = \int_{-\pi}^{\pi} (\chi_{F_0} - \chi_{F_0} \chi_{F_h}) \frac{dt}{2\pi} = \int_{-\pi}^{\pi} (\chi_{F_0}^2 - \chi_{F_0} \chi_{F_h}) \frac{dt}{2\pi}$$
$$= \int_{-\pi}^{\pi} \chi_{F_0} (\chi_{F_0} - \chi_{F_h}) \frac{dt}{2\pi} \le \int_{-\pi}^{\pi} |\chi_{F_0} - \chi_{F_h}| \frac{dt}{2\pi}$$
$$= \int_{-\pi}^{\pi} |\psi_{F_0}(t+h) - \psi_{F_0}(t)| \frac{dt}{2\pi}$$

where we denoted $\psi_{F_0}(t) = \chi_{F_0}(e^{it})$. But $\lim_{h\to 0} \int_{-\pi}^{\pi} |\psi_{F_0}(t+h) - \psi_{F_0}(t)| dt = 0$ (see e.g. [7], Th. 9.5, p. 183) and $\lim_{h\to 0} l(F_0 \cap F_h) = l(F_0)$.

Theorem 3. Let $\eta < 1$. Then there exists $\tau_i = \tau_i(F)$, i = 1, 2, such that, for each $\tau \in (-\tau_i, \tau_i)$, i = 1, 2, we have

(i) $P(B, b, \alpha; F, \tau) \neq P(B, b, \alpha; F, 0)$ for $0 < |\tau| < \tau_1$,

(ii) $P(B, b, \alpha; F, \tau) \cap P(B, b, \alpha; F, 0) \neq \emptyset$ for $|\tau| < \tau_2$.

Proof. (i) By Lemma 1, there exists $\tau_1 > 0$ such that, for each $\tau \in (-\tau_1, \tau_1)$, one has $l(F \cap F_{\tau}) < l(F)$. Hence the function $\tilde{P}_F(z) = b + (B - b)h(z; F) + (1 - \eta)\frac{e^{i\gamma} + z}{e^{i\gamma} - z}$, γ real, $z \in \mathbb{D}$, does not belong to $P(B, b, \alpha; F, \tau)$ since

 $\operatorname{Re} \tilde{P}_F(e^{i\Theta}) = b < B \text{ a.e. on } F_\tau \setminus F, \ l(F_\tau \setminus F) = l(F_\tau) - l(F_\tau \cap F) = l(F) - l(F \cap F_\tau) > 0.$

(ii) Define

$$egin{array}{ll} f(e^{it}) = B & ext{a.e. on} & F \cup F_{ au}, \ f(e^{it}) = b & ext{on} & \mathbb{T} ackslash (F \cup F_{ au}) \end{array}$$

and define

$$p(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) \frac{e^{it} + z}{e^{it} - z} dt, \qquad z \in \mathbb{D}.$$

Then $\operatorname{Re} p(e^{i\Theta}) = B$ a.e. on $F \cup F_{\tau}$, $\operatorname{Re} p(e^{i\Theta}) = b$ on $\mathbb{T} \setminus (F \cup F_{\tau})$. It is clear that $\operatorname{Re} p$ fulfils condition (2) a.e. F and F_{τ} and condition (3) on $\mathbb{T} \setminus F$ and $\mathbb{T} \setminus F_{\tau}$. An easy calculation gives

(4)
$$p(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{it}) dt = \eta + (B-b)[l(F) - l(F \cap F_{\tau})].$$

But, by Lemma 2, $\lim_{\tau\to 0} l(F \cap F_{\tau}) = l(F)$. Hence, by (4) and on account of $\eta < 1$, there exists $\tau_2 > 2$ such that p(0) < 1 for $|\tau| < \tau_2$ Then the function

$$\tilde{p}(z) = p(z) + (1 - p(0)) \frac{e^{i\gamma} + z}{e^{i\gamma} - z}, \qquad \gamma \text{- real}, \quad z \in \mathbb{D},$$

belongs to $P(B, b, \alpha; F, \tau) \cap P(B, b, \alpha; F, 0)$ for each $\tau \in (-\tau_2, \tau_2)$.

3. Now, we shall consider the problem of compactness and convexity for the class $P(B, b, \alpha)$.

The estimates of the linear functionals $\operatorname{Re} p(z)$ and $\operatorname{Im} p(z)$, $z \in \mathbb{D}$ fixed, given in [5] (Th. 2), and also the estimates (see [5], Remark 3) of the convex functionals $|q_k|, k = 1, 2, \ldots$, are interesting from the following point of view: they are valid on all the closed convex hull of $P(B, b, \alpha)$, although $P(B, b, \alpha)$ is neither convex nor compact (this wil be shown in this section). Recall, that the topology on $P(B, b, \alpha)$ is the restriction of the topology given by uniform convergence on compact subsets of \mathbb{D} on the set of all functions holomorphic in \mathbb{D} and that the class P is compact and hence $P(B, b, \alpha)$ is relatively compact in P in this topology.

Theorem 4. The class $P(B, b, \alpha)$ is neither convex nor compact.

Proof. First, we prove that $P(B, b, \alpha)$ is not convex. Let $p_F(z) = b + (B - b)h(z; F), z \in \mathbb{D}$ (see, for example, [6], (14)). Take $p_1(z) = p_{F_1}(z) + (1 - \eta)\frac{1+z}{1-z}$, $p_2(z) = p_{F_2} + (1 - \eta)\frac{1+z}{1-z}$, $z \in \mathbb{D}$, where the closed sets F_i , i = 1, 2, are chosen in such a manner, that $0 \leq m(F_1 \cap F_2) < \alpha$. Put $p_t = tp_1 + (1 - t)p_2$, 0 < t < 1. Since $Re\frac{1+z}{1-z} = 0$ a.e. on \mathbb{T} , $\operatorname{Re} p_{F_i} = B$ a.e. on F_i , $\operatorname{Re} p_{F_i} = b$ a.e. on $\mathbb{T} \setminus F_i$ and tb + (1 - t)B < B for 0 < t < 1, $\operatorname{Re} p_t = B$ a.e. on $F_1 \cap F_2$ and $\operatorname{Re} p_t < B$ a.e. on $\mathbb{T} \setminus F_1 \cap F_2$. Since $m(F_1 \cap F_2) < \alpha$, p_t does not satisfy (2) and so does not belong to $P(B, b, \alpha)$.

Now, we prove, that $P(B, b, \alpha)$ is not compact. Since $P(B, b, \alpha) \subset P$, it is sufficient to prove that $P(B, b, \alpha)$ is not closed. Put

(5)
$$p_n(z) = b + (B-b)h_{F_n}(z) + (1-\eta)\frac{1+z}{1-z}, \ z \in \mathbb{D},$$

28

where

$$F_n = \bigcup_{k=1}^n F_n^k, \qquad F_n^k = \left\{ z \in \mathbb{T}; \ z = e^{\frac{2k\pi i}{n}} e^{i\rho}, -\frac{\alpha\pi}{n} \le \rho \le \frac{\alpha\pi}{n} \right\},$$

and

$$h_{F_n}(z) = \alpha + 2\sum_{r=1}^{\infty} \frac{\sin \alpha \pi r}{\pi r} z^{rn}, \qquad z \in \mathbb{D}$$

(see [3], p. 2). For $z \in \mathbb{D}$, $|z| \le \rho < 1$, we have

$$|h_{F_n}(z) - \alpha| \le 2\sum_{r=1}^{\infty} \frac{|\sin \alpha \pi r|}{\pi r} \rho^{rn} \le 2\rho^n \sum_{r=0}^{\infty} (\rho^n)^r = \frac{2\rho^n}{1 - \rho^n},$$

and so, the sequence $\{h_{F_n}\}_{n=1}^{\infty}$ is uniformly convergent to the constant function α on every compact subset of \mathbb{D} . Denoting $p_0(z) = \eta + (1 - \eta)\frac{1+z}{1-z}$, $\eta = \alpha B + (1 - \alpha)b$, and using (5) we see that $p_n(z) \to p_0(z)$ uniformly on compact subsets of \mathbb{D} . But the function Rep_0 is equal η a.e. on \mathbb{T} , since $Re\frac{1+z}{1-z}$ is zero a.e. on \mathbb{T} . Since $\eta < \alpha B + (1 - \alpha)B = B$, p_0 does not fulfil (2), and so, does not belong to $P(B, b, \alpha)$.

Remark 3. The idea of the sequence $\{p_n\}$ comes from Theorem 5 of [6]: the function p_n realizes the maximum modules of the *n*-th coefficient in the class $P(B, b, \alpha)$. The measure μ_n in the Poisson representation of p_n is the sum of two parts: the (absolutely continuous) part $[b + (B - b)\chi_{F_n}(t)]\frac{dt}{2\pi}$ and the (singular) part $(1 - \eta)\varepsilon_0$ where ε_0 is the Dirac measure sitting a the point t = 0. Now, intuitively, the measures $\chi_{F_n}(t)\frac{dt}{2\pi}$ spread to the measure $\alpha \frac{dt}{2\pi}$ and the limit function $p_0(z)$ which is represented by the limit measure $\eta \frac{dt}{2\pi} + (1 - \eta)\varepsilon_0$ and does not belong to $P(B, b, \alpha)$.

References

- J. Fuka, Z.J. Jakubowski, On certain subclasses of bounded univalent functions, Ann. Polon. Math. 55 (1991), 109–115; Proc. of the XI-th Instructional Conference on the Theory of Extremal Problems (in Polish), Łódź, 1990, 20–27.
- _____, A certain class of Carathéodory functions defined by conditions on the circle, in: Current topics in analytic function theory, Editors H.M. Srivastava, Shigeyoshi Owa, World Scientific Publishing Company, Singapore, 1992, 94–105; Proc. of the V-th Intern. Conf. on Complex Analysis, Varna, September 15–21, 1991, p. 11; Proc. of the XIII-th Instr. Conf. on the Theory of Extremal Problems (in Polish), Łódź, 1992, 9–13.
- On extreme points of some subclasses of Carathéodory functions, Czechoslovak Acad. of Sci., Math. Inst., Preprint 72, 1992, 1–9; Proc. of the XIV-th Instr. Conf. on the Theory of Extremal Problems, Łódź, 1992, 11–15.
- 4. _____, On some applications of harmonic measure in the geometric theory of analytic functions, Math. Bohemica (to appear).
- 5. _____, On analytic functions with positive real part, to appear.
- On coefficient estimates in a class of Carathéodory functions with positive real parts, Proc. of the XV-th Conference on Complex Analysis and Complex Geometry, Łódź, 1994, 17–24.
- 7. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1974.

ZAGADNIENIA WYPUKŁOŚCI I ZWARTOŚCI PEWNYCH KLAS FUNKCJI CARATHÉODORY'EGO

Streszczenie. Niech *P* oznacza znaną klasę funkcji $p(z) = 1 + q_1 z + ...$ holomorficznych w kole jednostkowym \mathbb{D} i takich, że Rep(z) > 0 w \mathbb{D} . W artykule są badane zagadnienia wypukłości lub zwartości podklas $P(B, b, \alpha; F)$ i $P(B, b, \alpha)$ rodziny *P* określonych w Definicji 1. Praca należy do cyklu publikacji [1]–[5], gdzie były rozważane różne klasy funkcji holomorficznych w \mathbb{D} i spełniających na okręgu jednostkowym \mathbb{T} pewne warunki. Stanowi uzupełnienie rezultatów z pozycji [6].

Bronisławów, 11–15 stycznia, 1993 r.