On the problem of stability of the multiplicity/degree of a polynomial along a family of basic semialgebraic sets

V. Grandjean ¹ & M. Michalska ²

UFC (1) & UŁ(2)

Łódz - 11/01/2017

degree along a subset

Question

 $X \subset \mathbb{R}^n$. What is degree of $f \in \mathbb{R}[X_1, \dots, X_n]$ along X?

Definition

$$\deg^X f := \inf \left\{ \nu : \frac{f(x)}{|x|^\nu} \to 0 \text{ as } X \ni x \to \infty \right\}$$

Consequence(s)

$$\deg^X f \le \deg f.$$

•

<ロ> (日) (日) (日) (日) (日)

local multiplicity along a subset

Question

 $X \subset \mathbb{R}^n$ and origin $\mathbf{0} \in \operatorname{clos}(X)$.

What is multiplicity of $f \in \mathbb{R}[X_1, \ldots, X_n]$ at **0** along X?

Definition

$$\operatorname{mult}_{\boldsymbol{0}}^{X} f := \sup \left\{ \mu : \frac{f(x)}{|x|^{\mu}} \to 0 \text{ as } X \ni x \to \boldsymbol{0} \right\}.$$

Consequence(s)

 $\operatorname{mult}_{\mathbf{0}}^{X} f \geq \operatorname{degin}(f).$

(日) (周) (三) (三)

Degree = local multiplicity

Let
$$\iota: \mathbb{R}^n \setminus \mathbf{0} \to \mathbb{R}^n \setminus \mathbf{0}$$
 be $x \to \frac{x}{|x|^2}$.

Let
$$f \in \mathbb{R}[X_1, ..., X_n]$$
.
Thus $f = f_d + f_{d-1} + ... + f_0$ with $d = \deg f$.
Let $\tilde{f}(y) := |y|^{2d} f(\iota(y)) = f_d(y) + |y|^2 f_{d-1}(y) + ... + |y|^{2d} f_0$.

Lemma

For $X \subset \mathbb{R}^n \setminus \mathbf{0}$ and $f \in \mathbb{R}[X_1, \dots, X_n]$

$$\deg^X f = 2d - \operatorname{mult}_{\mathbf{0}}^{\iota(X)} \tilde{f}.$$

イロン イヨン イヨン イヨン

Semialgebraic setting

Theorem (Folklore)

If $S \subset \mathbb{R}^n$ closed, semialgebraic and $\mathbf{0} \in S$, then

 $\mathrm{mult}_{\mathbf{0}}^{S} f \in \mathbb{Q}_{\geq 0}$

for any $f \in \mathbb{R}[X_1, \ldots, X_n]$.

Gr. & Michalska

 Image: 11/01/2017
 Image: 5 / 14

<ロ> (日) (日) (日) (日) (日)

proof of Theorem "Folklore" I

Assume (for talk): S = clos. of its inter.

Let Z = Zariski clos. of ∂S .

Let $\mathbf{b}_0 : (M_0, E_0) \to (\mathbb{R}^n, \mathbf{0})$ blow.-up of $\mathbf{0}$.

Let $\pi := \sigma \circ \mathbf{b_0} : (M, E) \to (M_0, \sigma(E)) \to (\mathbb{R}^n, \pi(E))$ be an (admissible) emb. res. of sing. of Z, that is a *principalization* and *monomialization* of I_Z . Namely

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

proof of Theorem "Folklore" II

- E is a SNC divisor;
- $\pi^* I_Z$ is principal and monomial in *E*.

Let $\mathbf{m}_{\mathbf{0}} \subset \mathbb{R}[X_1, \dots, X_n]$ be max. ideal at $\mathbf{0}$.

Let
$$S^{\pi} := \operatorname{clos}(\pi^{-1}(S) \setminus E)$$
.

Consequence(s)

1)
$$E_0 := \pi^{-1}(0)$$
 is SNC;
2) $\pi^*(\mathbf{m}_0)$ is principal and monomial in E_0 ;
3) For any comp. H of E_0
- either $S^{\pi} \cap H$ is Zariski dense in H,
- or is \emptyset .

< ロ > < 同 > < 三 > < 三

proof of Theorem "Folklore" III

Let $E_0^S :=$ union of comp. $H \subset E_0$ s. t. $S^{\pi} \cap H$ is Zariski dense in H.

Let $f \in \mathbb{R}[X_1, \ldots, X_n]$ and H be a comp. of E_0^S . Find

 $\pi^*((f)) = I_H^{\varphi_H} \cdot J$

for $\varphi_H = \operatorname{mult}_H \pi^*(f) \in \mathbb{N}$, and J ideal s. t. $Z(J) \cap H$ of codim ≥ 2 .

We get $\pi^*(\mathbf{m_0}) = I_H^{\alpha_H} \cdot M_H$ and deduce

$$\operatorname{mult}_{\mathbf{0}}^{S} f := \min_{H \in E_{\mathbf{0}}^{S}} \frac{\varphi_{H}}{\alpha_{H}}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Motivations

Roughly speaking such investigations are related to (among other things):

- subalgebra of polynomials bounded on a given semialgebraic set (unbounded preferably);

- representation of positive polynomials;
- related problems to constrained optimization;

(日) (周) (三) (三)

what is it about

Let $f, g_1, \ldots, g_N \in \mathbb{R}[X_1, \ldots, X_n]$, pairwise \mathbb{R} -lin. indep. & both vanish. at **0**.

Let
$$\underline{t} = (t_1, \dots, t_N) \in \mathbb{R}^N$$
.
Let $S_{\underline{t}} := \operatorname{clos}\{f_{\underline{t}} > 0\}$ for $\underline{t} \in \mathbb{R}^N$ with $f_{\underline{t}} = f + \sum_i t_i g_i$.

Hypothesis: $\{f_{\underline{t}} > 0\} \neq \emptyset$ for all \underline{t} .

Problem (of Stability)

How many different functions $\operatorname{mult}_{\mathbf{0}}^{S_{\underline{t}}}$ are there ?

イロト イ団ト イヨト イヨト

Statement of the result

Theorem (Gr.& Michalska - 2016)

There exists $\Sigma \subset \mathbb{R}^N$ closed semialg. of codim ≥ 1 , s. t. for any con. comp. Λ of $\mathbb{R}^N \setminus \Sigma$ and for any $\underline{t} \in \Lambda$ the fct. $\operatorname{mult}_{\mathbf{0}}^{S_{\underline{t}}}$ is indep. of \underline{t} .

Known for n = 2, N = 1 from Kurdyka & Michalska & Spodzieja (2014).

(日) (同) (三) (三)

Ingredients of proof I

N = 1 and $g := g_1$.

Let $\pi : (M, E) \to (\mathbb{R}^n, \pi(E))$ be adm. resol. of sing. of both ideals (f) and (g) which we require to factor through the blowing-up of **0**.

Consequence(s)

 $E_{\mathbf{0}} := \pi^{-1}(\mathbf{0})$ is SNC divisor.

Theorem, for N = 1, reduces to show

Lemma

There are at most fin. many t for which exists a comp. H_t of E_0 s. t. $S_t^{\pi} \cap H_t$ is neither Zariski dense in H_t nor empty, for $S_t^{\pi} := clos(\pi^{-1}(S_t) \setminus E)$

<ロ> (日) (日) (日) (日) (日)

ingredients of proof II

For H a comp. of E then

$$\pi^*((f)) = I_H^{\varphi_H} \cdot F_H,$$

and

$$\pi^*((g)) = I_H^{\gamma_H} \cdot G_H$$

and

$$\pi^*(\mathbf{m_0}) = I_H^{\alpha_H} \cdot M_H$$

11/01/2017

13 / 14

 $f(\mathbf{0}) = g(\mathbf{0}) = \mathbf{0} \Longrightarrow \varphi_H, \gamma_H \ge \alpha_H \ge 1$ for each H comp. of $E_{\mathbf{0}}$.

Gr. & Michalska

ingredients of proof III - Illustration of typical argument

H comp. of E_0 .

 $\mathbf{p} \in H$ not a corner point of E. Nearby \mathbf{p}

$$\pi^* f = u^{\varphi_H} \cdot \psi_f$$
, and $\pi^* g = u^{\gamma_H} \cdot \psi_g$

with u loc. gen. of I_H at \mathbf{p} , and ψ_h , for h = f, g, loc. unit at \mathbf{p} .

If
$$\frac{f}{g}|_H \neq const$$
, then $\pi^* f_t = u^{\min(\varphi_H, \gamma_H)} \cdot \psi_t$ near **p**.

Lemma

 $\min(\varphi_H, \gamma_H) \text{ odd} \implies S_t^{\pi} \cap H = H \text{ (Zariski dense in H)}.$

(日) (同) (三) (三)