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ON A CLASS OF TYPICALLY-REAL FUNCTIONS
IN THE HALF-PLANE

Z.J. Jakubowski, A.  Lazińska ( Lódź)

As is known, in 1931 W. Rogosinski introduced the notion of typically-real
functions. He also examined the basic properties of functions

f(z) = z + a2z
2 + . . . + anz

n + . . . , |z| < 1,

holomorphic and typically-real in the unit disc |z| < 1 ([7]). The class of
such functions is most often denoted by TR. Other properties of the class
TR were next the objects of interest of many mathematicians (e.g. [2], [6]).

Of late years, there have also been investigated various classes of holomor-
phic functions in the half-plane Π+ = {z ∈ C : Re z > 0} with the so-called
hydrodynamic normalization (e.g. [1]). The aim of the present consid-
erations is to study the basic properties of typically-real functions in the
half-plane Π+.

Let H = H(Π+) be the class of all functions f holomorphic in Π+ such
that

(1) lim
z→∞
z∈Π+

(f(z) − z) = a

where a is some complex number.
13
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Let TR be a subclass of functions of H which take real values on the
positive real half-axis only. It is the class of typically-real functions in Π+

(cf. [7]).
Of course, if f ∈ TR, then we have a = ā in normalization condition (1).
Analogously as in the class TR one proves

Proposition 1. If f ∈ TR, then, for z ∈ Π+,

(2) Im f(z)


> 0 if Im z > 0,

= 0 if Im z = 0,

< 0 if Im z < 0.

Moreover, each function f ∈ H satisfying condition (2) is a function of the
class TR.

We shall next prove

Theorem 1. If f is a function of the class TR, then

(3) f (n)(z) = f (n)(z) for z = z̄ ∈ Π+, n = 1, 2, . . . .

Property (3) means that the function f ∈ TR expands in some neighbour-
hood of each point z = z̄ > 0 in a Taylor series with centre at the point z
and with real coefficients.

Proof. Take a function f ∈ TR. Let s∗ ∈ Π+ be any point such that s∗ =
s̄∗ > 0 and let

(4) U∗ = {z ∈ C : |z − s∗| < s∗}.

In disc (4) we have

(5) f(z) = f(s∗) +

∞∑
n=1

f (n)(s∗)

n!
(z − s∗)n, z ∈ U∗.

Let z = z̄ ∈ U∗. Then f(z) = f(z), and so, from (5) we get

∞∑
n=1

f (n)(s∗)

n!
(z − s∗)n =

∞∑
n=1

f (n)(s∗)

n!
(z − s∗)n.

In view of the theorem on the uniqueness of an expansion of a function in a
Taylor series,

f (n)(s∗) = f (n)(s∗), n = 1, 2, . . . ,

which, in virtue of arbitrariness of the choice of s∗ = s̄∗ > 0, proves the
assertion of Theorem 1.

The proposition below is also true.
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Proposition 2. If f ∈ TR, then,

(6) f(z) = f(z̄), z ∈ Π+.

Consequently, the image f(Π+) of the half-plane Π+ is symmetric with
respect to the real axis.

Proposition 2 is a simple consequence of the theorem on the uniqueness
of an analytic extension and the Riemann-Schwarz symmetry principle ([5],
p. 638, 673) for functions of the class TR.

Let us next notice that not all functions f ∈ H satisfying (3) are of the
class TR.

Example 1. Let

(7) f0(z) = z + a + z−2, z ∈ Π+, a ∈ R.

Of course, f0 ∈ H since f0 is a holomorphic function in Π+ and, by (7), we

have (1). Moreover, for z = z̄ > 0, we have f0(z) = f0(z) and f
(n)
0 (z) = f

(n)
0 (z),

n = 1, 2, . . . . We can easily obtain that there exists z0 ∈ Π+, z0 ̸= z̄0, such
that f0(z0) = f0(z0).

Summing up, we infer that f0 /∈ TR.

Example 2. A function of the form

(8) f1(z; a, b) = z + a + b/z, z ∈ Π+, a, b ∈ R,

belongs to the class TR if b ≤ 0.

Similarly as in the case of the class TR, the following theorem is true.

Theorem 2. The class TR is convex.

Let us next denote by SR the class of functions holomorphic and univalent
in Π+, satisfying the conditions

(i) limz→∞
z∈Π+

(f(z) − z) = a, a ∈ R,

(ii) there exists a point z0 ∈ Π+, z0 = z0(f), z0 = z̄0 > 0, such that

f (n)(z0) = f (n)(z0), n = 0, 1, 2, . . . .

We can prove

Lemma 1. If a function f is holomorphic in Π+ and condition (ii) holds,
then

(9) f (n)(z) = f (n)(z) for z = z̄ > 0, n = 0, 1, 2, . . . .

From the definition of the class SR and from Lemma 1 we obtain
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Theorem 1′. If f ∈ SR, then conditions (9) hold.

The considerations carried out above also justify

Proposition 2′. If f ∈ SR, then (6) hold, that is,

f(z) = f(z̄), z ∈ Π+.

Besides, Proposition 2′ implies

Theorem 3. The inclusion SR ⊂ TR takes place.

Example 3. We can show that each function f1 of form (8) for any b ≤ 0 is
a function of the class SR.

Example 4. A function of the form

f2(z; a, b) = z + a + b/z2, z ∈ Π+, a, b ∈ R,

belongs to the class TR if b ≤ 0, but do not belong to SR when b < 0.

From the above examples we deduce, for instance, that

SR, TR ̸= ∅, H\TR ̸= ∅, TR\SR ̸= ∅.

In turn, define the class TR of functions holomorphic in Π̃ = Π+\{∞},
satisfying condition (1) for z ∈ Π̃ and taking real values on the non-negative
real half-axis only, i.e. f(z) = f(z) if and only if z = z̄, z ∈ Π̃, and, moreover,
such that f(0) = 0, f ′(0) > 0.

The definitions of the classes TR and TR imply the inclusion

TR ⊂ TR,

and, what is more, the class TR is convex.
Functions of the class TR also satisfy the following property which is the

equivalent of Proposition 1 for the class TR.

Proposition 3. If f ∈ TR, then, z ∈ Π̃, we have

Im f(z)


> 0 when Im z > 0,

= 0 when Im z = 0,

< 0 when Im z < 0.

Next, define the class PR of functions p holomorphic in Π̃, satisfying the
conditions

(10a) lim
z→∞
z∈Π̃

[z(p(z) − 1)] = a ∈ R,
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(10b) Re p(z) > 0, z ∈ Π̃,

(10c) p(0) ∈ R,

(10d) p(n)(0) ∈ R, n = 1, 2, . . . .

Of course, this class is convex. Besides, from (10a) we get

lim
z→∞
z∈Π̃

p(z) = 1 =: p(∞),

whereas from (10c), (10d) and Lemma 1

p(n)(z) = p(n)(z), z = z̄ ≥ 0, n = 0, 1, 2, . . . .

What is more, we have the following

Theorem 4. For any function f ∈ TR, the function

p(z) =

{
f(z)
z for z ∈ Π+\{0,∞},

f ′(0) for z = 0,

belongs to the class PR.

Consider the converse problem. Let p ∈ PR. Put

(11) f(z) = zp(z), z ∈ Π̃.

Of course, f is holomorphic in Π̃, f(0) = 0, f ′(0) = p(0) > 0. From (10a) we
obtain

lim
z→∞
z∈Π̃

(f(z) − z) = a ∈ R.

Since

f(z) = z

[
p(0) +

∞∑
n=1

p(n)(0)

n!
zn

]

is some disc |z| < δ, therefore from (10c) and (10d) we get that f(z) = f(z)
for z = z̄, |z| < δ. In this disc we have

f ′(z) = p(0) +
∞∑

n=1

p(n)(0)

n!
(n + 1)zn
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and, generally,

f (m)(z) =

∞∑
n=m

p(n−1)(0)

(n− 1)!
n(n− 1)(n− 2) · · · (n−m + 1)zn−m, m = 1, 2, . . . .

In view of (10c) and (10d), condition (ii) is satisfied at each point z0 = z̄0
of the disc |z| < δ. In virtue of Lemma 1, the function f satisfies conditions
(9).

It remains to show that f(z) = f(z) only if z = z̄ ∈ Π̃. From (11) and
(10b) we infer that, for z = iy, y ̸= 0,

Re p(z) = Re
f(iy)

iy
=

Im f(iy)

y
> 0.

So, if y > 0, then Im f(iy) > 0, whereas if y < 0, then Im f(iy) < 0. On the
real half-axis z ≥ 0 we have Im f(z) = 0. By condition (1), for z tending to
infinity, Im f(z) has the same sign as Im z. Hence, applying the minimum
principle to the function Im f(z), z ∈ {z ∈ C : Im z ≥ 0 ∧ Re z ≥ 0}, we deduce
that Im f(z) > 0 when Im z > 0 and z ∈ Π+. In an analogous way we infer
that Im f(z) < 0 when z ∈ Π+, Im z < 0.

We have thus proved

Theorem 4′. For any function p ∈ PR, function (11) belongs to the class TR.

Example 5. A function of the form

f3(z; a, b, δ) = z + a + b/(z + δ), z ∈ Π̃, a, b, δ ∈ R, b ≤ 0, δ > 0, aδ + b = 0,

belongs to the class TR.

Example 6. In view of Example 5 and according to Theorem 4, functions
of the form

p(z; a, b, δ) =

{
1 + a

z + b
z(z+δ) for z ∈ Π+\{0,∞},

1 − b
δ2 for z = 0,

where a, b, δ ∈ R, b ≤ 0, δ > 0, aδ + b = 0 belong to the class PR.

Let us come back to the classes SR, TR. We can prove

Theorem 5. The families SR, TR are not compact.

There are also other properties of the class TR. In particular, we have
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Theorem 6. If a function of the class TR satisfies the condition

lim
z→0

z=z̄>0

f(z) = 0,

then

Re
f(z)

z
> 0, z ∈ Π+.

To finish with, let us observe that some of the properties of the class TR

is easily carried over to the class TR. Other ones get complicated distinctly.
The main assertions of the paper appeared in [3]. The omitted proofs and
other properties of the classes of functions being investigated are in press
([4]).
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O klasie funkcji typowo-rzeczywistych w pó lp laszczyźnie Re z > 0

Streszczenie. Jak wiadomo, W. Rogisinski w 1931 roku wprowadzi l poje
‘
cie

funkcji typowo-rzeczywistych. Zbada l on również podstawowe w lasności
funkcji

f(z) = z + a2z
2 + . . . + anz

n + . . . , |z| < 1,

holomorficznych i typowo-rzeczywistych w kole jednostkowym |z| < 1 ([7]).
Klasa takich funkcji najcze

‘
ściej oznaczana jest przez TR. Inne w lasności

klasy TR stanowi ly naste
‘
pnie przedmiot zainteresowań wielu matematyków

(np. [2], [6]).
W ostatnich latach badane sa

‘
też różne klasy funkcji holomorficznych w

pó lp laszczyźnie Re z > 0 z tzw. normalizacja
‘

hydrodynamiczna
‘

(np. [1]).
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Celem niniejszych rozważań jest zbadanie podstawowych w lasności funkcji
typowo-rzeczywistych w wyżej wymienionej pó lp laszczyźnie.

Bronis lawów, 10–14 stycznia, 1994 r.


