MATERIA LY XVI KONFERENCJI SZKOLENIOWEJ Z ANALIZY I GEOMETRII ZESPOLONEJ

ON A CLASS OF TYPICALLY-REAL FUNCTIONS IN THE HALF-PLANE

Z.J. Jakubowski, A. Lazińska (Lódź)

As is known, in 1931 W. Rogosinski introduced the notion of typically-real functions. He also examined the basic properties of functions

$$
f(z) = z + a_2 z^2 + \ldots + a_n z^n + \ldots, \qquad |z| < 1,
$$

holomorphic and typically-real in the unit disc $|z| < 1$ ([7]). The class of such functions is most often denoted by T_R . Other properties of the class T_R were next the objects of interest of many mathematicians (e.g. [2], [6]).

Of late years, there have also been investigated various classes of holomorphic functions in the half-plane $\Pi^+ = \{z \in \mathbb{C} : \text{Re } z > 0\}$ with the so-called hydrodynamic normalization (e.g. [1]). The aim of the present considerations is to study the basic properties of typically-real functions in the half-plane Π^+ .

Let $H = H(\Pi^+)$ be the class of all functions *f* holomorphic in Π^+ such that

(1)
$$
\lim_{\substack{z \to \infty \\ z \in \Pi^+}} (f(z) - z) = a
$$

where *a* is some complex number.

Let \mathcal{T}_R be a subclass of functions of *H* which take real values on the positive real half-axis only. It is the class of typically-real functions in *Π*⁺ $(cf. [7]).$

Of course, if $f \in \mathcal{T}_R$, then we have $a = \bar{a}$ in normalization condition (1). Analogously as in the class *T^R* one proves

Proposition 1. *If* $f \in \mathcal{T}_R$ *, then, for* $z \in \Pi^+$ *,*

(2)
$$
\operatorname{Im} f(z) \begin{cases} > 0 & \text{if } \operatorname{Im} z > 0, \\ = 0 & \text{if } \operatorname{Im} z = 0, \\ < 0 & \text{if } \operatorname{Im} z < 0. \end{cases}
$$

Moreover, each function $f \in H$ *satisfying condition* (2) *is a function of the* $class \tau_R$ *.*

We shall next prove

Theorem 1. *If f is a function of the class* \mathcal{T}_R *, then*

(3)
$$
f^{(n)}(z) = \overline{f^{(n)}(z)}
$$
 for $z = \overline{z} \in \Pi^+$, $n = 1, 2, ...$

Property (3) means that the function $f \in \mathcal{T}_R$ expands in some neighbourhood of each point $z = \overline{z} > 0$ in a Taylor series with centre at the point z and with real coefficients.

Proof. Take a function $f \in \mathcal{T}_R$. Let $s_* \in \mathbb{R}^+$ be any point such that $s_* =$ \bar{s}_* > 0 and let

(4)
$$
U_* = \{z \in \mathbb{C} : |z - s_*| < s_*\}.
$$

In disc (4) we have

(5)
$$
f(z) = f(s_*) + \sum_{n=1}^{\infty} \frac{f^{(n)}(s_*)}{n!} (z - s_*)^n, \qquad z \in U_*.
$$

Let $z = \overline{z} \in U_*$. Then $f(z) = \overline{f(z)}$, and so, from (5) we get

$$
\sum_{n=1}^{\infty} \frac{f^{(n)}(s_*)}{n!} (z - s_*)^n = \sum_{n=1}^{\infty} \frac{\overline{f^{(n)}(s_*)}}{n!} (z - s_*)^n.
$$

In view of the theorem on the uniqueness of an expansion of a function in a Taylor series,

$$
f^{(n)}(s_*) = \overline{f^{(n)}(s_*)}, \qquad n = 1, 2, \dots,
$$

which, in virtue of arbitrariness of the choice of $s_* = \bar{s}_* > 0$, proves the assertion of Theorem 1.

The proposition below is also true.

Proposition 2. *If* $f \in \mathcal{T}_R$ *, then,*

(6)
$$
\overline{f(z)} = f(\overline{z}), \qquad z \in \Pi^+.
$$

Consequently, the image $f(\Pi^+)$ of the half-plane Π^+ is symmetric with respect to the real axis.

Proposition 2 is a simple consequence of the theorem on the uniqueness of an analytic extension and the Riemann-Schwarz symmetry principle ([5], p. 638, 673) for functions of the class \mathcal{T}_R .

Let us next notice that not all functions $f \in H$ satisfying (3) are of the class \mathcal{T}_R .

Example 1. Let

(7)
$$
f_0(z) = z + a + z^{-2}, \qquad z \in \Pi^+, \quad a \in \mathbb{R}.
$$

Of course, $f_0 \in H$ since f_0 is a holomorphic function in π ⁺ and, by (7), we have (1). Moreover, for $z = \bar{z} > 0$, we have $f_0(z) = \overline{f_0(z)}$ and $f_0^{(n)}(z) = f_0^{(n)}(z)$, $n = 1, 2, \ldots$ We can easily obtain that there exists $z_0 \in \Pi^+$, $z_0 \neq \overline{z}_0$, such that $f_0(z_0) = \overline{f_0(z_0)}$.

Summing up, we infer that $f_0 \notin \mathcal{T}_R$.

Example 2. A function of the form

(8)
$$
f_1(z; a, b) = z + a + b/z, \qquad z \in \Pi^+, \quad a, b \in \mathbb{R},
$$

belongs to the class \mathcal{T}_R if $b \leq 0$.

Similarly as in the case of the class T_R , the following theorem is true.

Theorem 2. *The class* \mathcal{T}_R *is convex.*

Let us next denote by S_R the class of functions holomorphic and univalent in Π^+ , satisfying the conditions

- (i) $\lim_{z \to \infty} \frac{z}{z} = \frac{f(z)}{z} z$ = *a*, *a* $\in \mathbb{R}$,
- (ii) there exists a point $z_0 \in \Pi^+$, $z_0 = z_0(f)$, $z_0 = \overline{z_0} > 0$, such that $f^{(n)}(z_0) = f^{(n)}(z_0), n = 0, 1, 2, \ldots$

We can prove

Lemma 1. *If a function f is holomorphic in* Π^+ *and condition (ii) holds, then*

(9)
$$
f^{(n)}(z) = \overline{f^{(n)}(z)} \quad \text{for } z = \overline{z} > 0, \quad n = 0, 1, 2, \dots.
$$

From the definition of the class S_R and from Lemma 1 we obtain

Theorem 1'. *If* $f \in S_R$ *, then conditions (9) hold.*

The considerations carried out above also justify

Proposition 2'. If $f \in S_R$, then (6) hold, that is,

$$
\overline{f(z)} = f(\bar{z}), \qquad z \in \Pi^+.
$$

Besides, Proposition 2*′* implies

Theorem 3. *The inclusion* $S_R \subset \mathcal{T}_R$ *takes place.*

Example 3. We can show that each function f_1 of form (8) for any $b \le 0$ is a function of the class S_R .

Example 4. A function of the form

$$
f_2(z; a, b) = z + a + b/z^2, \qquad z \in \Pi^+, \quad a, b \in \mathbb{R},
$$

belongs to the class \mathcal{T}_R if $b \leq 0$, but do not belong to \mathcal{S}_R when $b < 0$.

From the above examples we deduce, for instance, that

$$
\mathcal{S}_R, \mathcal{T}_R \neq \emptyset, \qquad H \backslash \mathcal{T}_R \neq \emptyset, \qquad \mathcal{T}_R \backslash \mathcal{S}_R \neq \emptyset.
$$

In turn, define the class $\overline{\mathcal{T}_R}$ of functions holomorphic in $\widetilde{H} = \overline{H^+}\setminus{\infty}$, satisfying condition (1) for $z \in \tilde{\Pi}$ and taking real values on the non-negative real half-axis only, i.e. $f(z) = \overline{f(z)}$ if and only if $z = \overline{z}$, $z \in \overline{\tilde{\Pi}}$, and, moreover, such that $f(0) = 0, f'(0) > 0$.

The definitions of the classes \mathcal{T}_R and $\overline{\mathcal{T}_R}$ imply the inclusion

$$
\overline{\mathcal{T}_R}\subset \mathcal{T}_R,
$$

and, what is more, the class $\overline{\mathcal{T}_R}$ is convex.

Functions of the class $\overline{\mathcal{T}_R}$ also satisfy the following property which is the equivalent of Proposition 1 for the class \mathcal{T}_R .

Proposition 3. *If* $f \in \overline{\mathcal{T}_R}$ *, then,* $z \in \widetilde{H}$ *, we have*

$$
\operatorname{Im} f(z) \begin{cases} > 0 \\ = 0 & \text{when} \quad \operatorname{Im} z > 0, \\ < 0 & \text{when} \quad \operatorname{Im} z = 0, \\ < 0 & \text{when} \quad \operatorname{Im} z < 0. \end{cases}
$$

Next, define the class $\overline{\mathcal{P}_R}$ of functions *p* holomorphic in $\tilde{\Pi}$, satisfying the conditions

(10a)
$$
\lim_{\substack{z \to \infty \\ z \in \tilde{\Pi}}} [z(p(z) - 1)] = a \in \mathbb{R},
$$

(10b)
$$
\operatorname{Re} p(z) > 0, \qquad z \in \tilde{\Pi},
$$

$$
(10c) \t\t\t p(0) \in \mathbb{R},
$$

(10d)
$$
p^{(n)}(0) \in \mathbb{R}, \quad n = 1, 2, ...
$$

Of course, this class is convex. Besides, from (10a) we get

$$
\lim_{\substack{z \to \infty \\ z \in \tilde{\Pi}}} p(z) = 1 =: p(\infty),
$$

whereas from (10c), (10d) and Lemma 1

$$
p^{(n)}(z) = \overline{p^{(n)}(z)}, \qquad z = \overline{z} \ge 0, \quad n = 0, 1, 2, \dots
$$

What is more, we have the following

Theorem 4. *For any function* $f \in \overline{\mathcal{T}_R}$ *, the function*

$$
p(z) = \begin{cases} \frac{f(z)}{z} & \text{for } z \in \overline{H^+} \backslash \{0, \infty\}, \\ f'(0) & \text{for } z = 0, \end{cases}
$$

belongs to the class $\overline{\mathcal{P}_R}$ *.*

Consider the converse problem. Let $p \in \overline{\mathcal{P}_R}$. Put

(11)
$$
f(z) = zp(z), \qquad z \in \widetilde{\Pi}.
$$

Of course, *f* is holomorphic in *Π*, $f(0) = 0$, $f'(0) = p(0) > 0$. From (10a) we obtain

$$
\lim_{\substack{z \to \infty \\ z \in \tilde{\Pi}}} (f(z) - z) = a \in \mathbb{R}.
$$

Since

$$
f(z) = z \left[p(0) + \sum_{n=1}^{\infty} \frac{p^{(n)}(0)}{n!} z^n \right]
$$

is some disc $|z| < \delta$, therefore from (10c) and (10d) we get that $f(z) = \overline{f(z)}$ for $z = \bar{z}$, $|z| < \delta$. In this disc we have

$$
f'(z) = p(0) + \sum_{n=1}^{\infty} \frac{p^{(n)}(0)}{n!} (n+1) z^n
$$

and, generally,

$$
f^{(m)}(z) = \sum_{n=m}^{\infty} \frac{p^{(n-1)}(0)}{(n-1)!} n(n-1)(n-2)\cdots(n-m+1)z^{n-m}, \qquad m=1,2,\ldots.
$$

In view of (10c) and (10d), condition (ii) is satisfied at each point $z_0 = \bar{z}_0$ of the disc $|z| < \delta$. In virtue of Lemma 1, the function f satisfies conditions (9).

It remains to show that $f(z) = \overline{f(z)}$ only if $z = \overline{z} \in \tilde{\Pi}$. From (11) and (10b) we infer that, for $z = iy, y \neq 0$,

$$
\operatorname{Re} p(z) = \operatorname{Re} \frac{f(iy)}{iy} = \frac{\operatorname{Im} f(iy)}{y} > 0.
$$

So, if $y > 0$, then Im $f(iy) > 0$, whereas if $y < 0$, then Im $f(iy) < 0$. On the real half-axis $z \geq 0$ we have Im $f(z) = 0$. By condition (1), for *z* tending to infinity, Im $f(z)$ has the same sign as Im *z*. Hence, applying the minimum principle to the function $\text{Im } f(z)$, $z \in \{z \in \mathbb{C} : \text{Im } z \ge 0 \land \text{Re } z \ge 0\}$, we deduce that Im $f(z) > 0$ when Im $z > 0$ and $z \in \Pi^+$. In an analogous way we infer that $\text{Im } f(z) < 0$ when $z \in \mathbb{I}^+$, $\text{Im } z < 0$.

We have thus proved

Theorem 4'. For any function $p \in \overline{\mathcal{P}_R}$, function (11) belongs to the class $\overline{\mathcal{T}_R}$.

Example 5. A function of the form

 $f_3(z; a, b, \delta) = z + a + b/(z + \delta), \ z \in \tilde{\Pi}, \ a, b, \delta \in \mathbb{R}, \ b \leq 0, \ \delta > 0, \ a\delta + b = 0,$

belongs to the class $\overline{\mathcal{T}_R}$.

Example 6. In view of Example 5 and according to Theorem 4, functions of the form

$$
p(z; a, b, \delta) = \begin{cases} 1 + \frac{a}{z} + \frac{b}{z(z + \delta)} & \text{for } z \in \overline{H^+} \setminus \{0, \infty\}, \\ 1 - \frac{b}{\delta^2} & \text{for } z = 0, \end{cases}
$$

where $a, b, \delta \in \mathbb{R}, b \leq 0, \delta > 0, a\delta + b = 0$ belong to the class $\overline{\mathcal{P}_R}$.

Let us come back to the classes S_R , \mathcal{T}_R . We can prove

Theorem 5. *The families* S_R *,* T_R *are not compact.*

There are also other properties of the class \mathcal{T}_R . In particular, we have

Theorem 6. If a function of the class \mathcal{T}_R satisfies the condition

$$
\lim_{\substack{z \to 0 \\ z = \overline{z} > 0}} f(z) = 0,
$$

then

$$
\operatorname{Re}\frac{f(z)}{z} > 0, \qquad z \in \varPi^+.
$$

To finish with, let us observe that some of the properties of the class *T^R* is easily carried over to the class \mathcal{T}_R . Other ones get complicated distinctly. The main assertions of the paper appeared in [3]. The omitted proofs and other properties of the classes of functions being investigated are in press $([4])$.

REFERENCES

- 1. G. Dimkov, J. Stankiewicz, Z. Stankiewicz, *On a class of starlike functions defined in a halfplane*, Ann. Polon. Math. **55** (1991), 81–86.
- 2. G.M. Goluzin, *On typically-real functions*, Mat. Sbornik **27** (1950), no. 69, 201–218. (in Russian)
- 3. Z.J. Jakubowski, A. Lazińska, *On typically-real functions in the half-plane*, Proceedings of the Congress of the Polish Mathematical Society, Rzeszów 6–9.09.1993, 1993, 111–112 (in Polish); Proceedings of the XI-th Conference on Analytic Functions, Rynia 13–19.06.1994, 1994, 29–30.
- 4. , *On typically-real functions in the half-plane* (to appear).
- 5. A.I. Markuˇseviˇc, *The theory of analytic functions*, Gos. Izd. Techn.-Teor. Lit. Moskva-Leningrad (1950). (in Russian)
- 6. M.S. Robertson, *On the coefficients of a typically-real function*, Bull. Amer. Math. Soc. **41** (1935), 565–572.
- 7. W. Rogosinski, *Uber positive harmonische Entwicklungen und typisch-reelle Potenzreihen ¨* , Math. Z. **35** (1932), 93–121.

O KLASIE FUNKCJI TYPOWO-RZECZYWISTYCH W PÓŁPŁASZCZYŹNIE $\text{Re } z > 0$

Streszczenie. Jak wiadomo, W. Rogisinski w 1931 roku wprowadził pojęcie
funkcji typowe rzeczywistych z badał en również podstawowe własności funkcji typowo-rzeczywistych. Zbadał on również podstawowe własności funkcii

$$
f(z) = z + a_2 z^2 + \ldots + a_n z^n + \ldots, \qquad |z| < 1,
$$

holomorficznych i typowo-rzeczywistych w kole jednostkowym $|z| < 1$ ([7]). Klasa takich funkcji najczęściej oznaczana jest przez T_R . Inne własności
klasy $T_{\rm c}$ stanowiły nastopnie przedmiet zajnteresowań wielu matematyków klasy T_R stanowiły następnie przedmiot zainteresowań wielu matematyków $(np. [2], [6]).$

W ostatnich latach badane są też różne klasy funkcji holomorficznych w $\frac{1}{2}$ półpłaszczyźnie Re $z > 0$ z tzw. normalizacją hydrodynamiczną (np. [1]). Celem niniejszych rozważań jest zbadanie podstawowych własności funkcji $\,$ typowo-rzeczywistych w wyżej wymienionej półpłaszczyźnie.

Bronis law´ow, 10–14 stycznia, 1994 r.