Bi-Lipschitz equivalent cones with different degrees

A. Fernandes, Z. Jelonek, J. E. Sampaio

Łódź, January 9, 2024

A. Fernandes, Z. Jelonek, J. E. Sampaio [Bi-Lipschitz equivalent cones with different degrees](#page-0-0)

 $2Q$

A BAYA B

In 1971, O. Zariski proposed many questions and the most known among them is the following.

Question A. Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two complex analytic functions. If there is a homeomorphism $\varphi \colon (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$, is it true that the multiplicities $m(V(f), 0)$ and $m(V(g), 0)$ are equal?

イ桐 トラ ミュート

 \equiv

This is still an open problem. The stated version of Question A is Zariski's famous Multiplicity Conjecture. Recently, Zariski's Multiplicity Conjecture for families with isolated singularities was confirmed by Fernández de Bobadilla and Pełka.

4 桐 ト 4 三 ト 4 三 ト

We can consider the Zariski's Multiplicity Conjecture from the Lipschitz point of view:

General Metric Conjecture. Let $X \subset \mathbb{C}^n$ and $Y \subset \mathbb{C}^m$ be two complex analytic sets with dim $X = \dim Y = d$. If their germs at zero are bi-Lipschitz homeomorphic, then their multiplicities $m(X, 0)$ and $m(Y, 0)$ are equal.

A + + = + + = +

 \equiv

Bobadilla, Fernandes and Sampaio proved that this Conjecture has a positive answer for $d = 2$. The positive answer for $d = 1$ was already known, since Neumann and Pichon, with previous contributions of Pham and Teissier and Fernandes, proved that the Puiseux pairs of plane curves are invariant under bi-Lipschitz homeomorphisms, and as a consequence the multiplicity of complex analytic curves with any codimension is invariant under bi-Lipschitz homeomorphisms.

However, in dimension three, Birbrair, Fernandes, Sampaio and Verbitsky have presented examples of complex algebraic cones X and Y with isolated singularity, which were bi-Lipschitz homeomorphic but with different multiplicities at the origin. Their proof was based on the theory of Smale-Barden manifolds.

The first aim of this Lecture is to generalize this result. We show that for every $k \geq 3$ there exist complex algebraic cones of dimension k with isolated singularities, which are bi-Lipschitz and semi-algebraically equivalent but have different degrees. Our proof is completely different than this of Birbrair, Fernandes, Sampaio and Verbitsky and it is based on the Steenrod Theorem about sphere bundles.

A + + = + + = +

Let us recall:

Zariski Question B. (we give here somewhat simplified version) Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two complex analytic functions. If there is a homeomorphism $\varphi \colon (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$, is there a homeomorphism h: $E_0(V(f)) \rightarrow E_0(V(g))$?

Here $E_0(V(f))$ denotes the base of the cone tangent to $V(f)$ at 0.

す例 トラミチャン ミューニ

This problem has a negative answer, as shown by Fernández de Bobadilla in 2005. However, in the bi-Lipschitz case it still makes sense and is still open:

Metric Question B. Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two complex analytic functions. If there is a bi-Lipschitz homeomorphism $\varphi \colon (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$, is there a homeomorphism $h: E_0(V(f)) \to E_0(V(g))$?

オター・オティ オティ

 \equiv

The second question that we have in mind has the following more general statement:

General Metric Question B. Let $X \subset \mathbb{C}^n$ and $Y \subset \mathbb{C}^m$ be two complex analytic sets with dim $X = \dim Y = d$. If $(X, 0)$ and $(Y, 0)$ are bi-Lipschitz homeomorphic, is there a homeomorphism $h: E_0(X) \to E_0(Y)$?

4 桐 ト 4 三 ト 4 三 ト

Kollár proved that if $X \subset \mathbb{CP}^{n+1}$ is a smooth projective hypersurface of dimension greater than one, then the degree of X is determined by the underlying topological space of X . Moreover Barthel and Dimca proved that in the case of projective hypersurfaces (possibly with singularities) of dimension greater than one, degree one is a topological invariant. Here we generalize these results to dimension $n > 2$. More precisely, we prove the following:

Theorem. Let $V, V' \subset \mathbb{CP}^{n+1}$ be two projective hypersurfaces. Assume $n > 2$. If V is homeomorphic to V', then deg $V = \deg V'$.

イロメ イ押 トラ ミトラ ミト

As a consequence of this result, we show, that a positive answer to Metric Question B implies a positive answer to the following :

Metric Question A. Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two complex analytic functions. If there is a bi-Lipschitz homeomorphism $\varphi\colon (\mathbb{C}^n,V(f),0)\to (\mathbb{C}^n,V(g),0)$, is it true that $m(V(f), 0) = m(V(g), 0)$?

オター・オティ オティ

 \equiv

In the final part of this lecture, we classify links of real cones with base $\mathbb{P}^1 \times \mathbb{P}^2.$ As an application, we give examples of manifolds , which are not diffeomorphic to projective manifolds of odd degree.

Finally, we give an example of three four-dimensional real algebraic cones in \mathbb{R}^8 with isolated singularity which are semi-algebraically and bi-Lipschitz equivalent but have non-homeomorphic bases. In particular, the real version of General Metric Question B has a negative answer.

4 桐 ト 4 三 ト 4 三 ト

- Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be two sets and let $h: X \to Y$.
	- 1. We say that h is Lipschitz if there exists a positive constant C such that

$$
||h(x)-h(y)||\leq C||x-y||, \quad \forall x,y\in X.
$$

2. We say that h is **bi-Lipschitz** if h is a homeomorphism, it is Lipschitz and its inverse is also Lipschitz. In this case, we say that X and Y are **bi-Lipschitz equivalent**. When $n = m$ and h is the restriction of a bi-Lipschitz homeomorphism $H: \mathbb{R}^n \to \mathbb{R}^n$, we say that X and Y are **ambient bi-Lipschitz** equivalent.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Let $X \subset \mathbb{P}^n$ be an algebraic variety. Then by an algebraic cone $\overline{\mathcal{C}(X)}\subset\mathbb{P}^{n+1}$ with base X we mean the set

$$
\overline{C(X)} = \bigcup_{x \in X} \overline{O, x},
$$

where O is the center of coordinates in \mathbb{R}^{n+1} , and $\overline{O,x}$ means the projective line which goes through O and x . By an affine cone $C(X)$ we mean $\overline{C(X)} \setminus X$.

マター マライン エー・エ

 \equiv

Let $C(X)$ and $C(Y)$ be affine cones in $\mathbb{R}^N.$ Assume that their links are bi-Lipschitz (semi-algebraically) equivalent. Then they are bi-Lipschitz (semi-algebraically) equivalent. Moreover, if dim $C(X) = \dim C(Y) = d$, $2d + 2 \leq N$ and $C(X)$ is semi-algebraically bi-Lipschitz equivalent to $C(Y)$, then they are ambient semi-algebraically bi-Lipschitz equivalent.

Let \mathcal{C}_k denotes the Veronese embedding of degree k of \mathbb{CP}^1 into \mathbb{CP}^k . Let $n\geq 2$ and consider the varieties $X_{k,n}=\phi(\textit{C}_k\times\mathbb{CP}^{n-1}),$ where ϕ is the Segre embedding. Then for fixed *n* all varieties $X_{k,n}$ have different degrees deg $X_{k,n} = kn$ and among the cones $C(X_{k,n})$ there are infinitely many cones which are bi-Lipschitz and semi-algebraically equivalent.

Proof: Note that C_k is $k{\mathbb C}{\mathbb P}^1$ as a cycle. Hence $C_k \times \mathbb{C}\mathbb{P}^{n-1} \sim k\mathbb{C}\mathbb{P}^1 \times \mathbb{C}\mathbb{P}^{n-1}$. Since after the Segre embedding $\deg \mathbb{CP}^1 \times \mathbb{CP}^{n-1} = n$, we have deg $X_{k,n} = kn$. Using a generic projection, we can assume that all $X_{k,n}$ are in $\mathbb{CP}^{2n+1}.$ By construction, $X_{k,n}$ is the union of projective $(n-1)$ -planes $X=\bigcup_{a\in\mathcal{C}_k}\phi(\{a\}\times\mathbb{C}\mathbb{P}^{n-1}).$ This means that $\overline{C(X_{k,n})}$ is the union of *n*-planes which has the $(n-1)$ -plane $\phi(\{a\}\times \mathbb{CP}^{n-1})$ at infinity and goes through the point $O = (0, ..., 0)$.

イロメ イ押 トラ ミューエム・エ

Thus the link $L_{k,n}$ of this cone is a union of $(2n - 1)$ -spheres. In fact using the Ehresmann Theorem, it is easy to observe that these links are sphere bundles over $\mathit{C}_k \cong S^2$ with projection being the a composition of a projection $\rho: \mathbb{CP}^{2n+1}\setminus \{0\} \to \mathbb{CP}^{2n}$ and the projection $q: C_k \times \mathbb{C}\mathbb{P}^{n-1} \to C_k$. By the Steenrod Theorem topologically there are only two such sphere bundles.

On the other hand on a compact manifold of dimension different from four there are only a finite number of differential structures. This means that all manifolds $L_{k,n}$, $k = 1, 2, ...,$ can have only a finite number of different differential structures. By the Dirichlet box principle, among all $X_{k,n}$ there is an infinite family S whose members are diffeomorphic to each other.

By result of Kollar all links from the family S are Nash diffeomorphic. in particular they are bi-Lipschitz and semi-algebraically equivalent. Hence we see that all cones $C(X)$, $X \in S$, are bi-Lipschitz and semi-algebraically equivalent. But all members of the family $\{C(X): X \in S\}$ have different degrees.

オート オート オート

 \equiv

Corollary

For every $n \geq 3$ there exist two analytic n dimensional germs $V, V' \subset (\mathbb{C}^{2n}, 0)$ with isolated singularities, which are bi-Lipschitz, sub-analytically equivalent, but have different multiplicities at 0.

 Ω

遥

Let $V, V' \subset \mathbb{CP}^{n+1}$ be two projective hypersurfaces. Assume $n > 2$. If V is homeomorphic to V', then deg $V = \text{deg } V'$.

 \equiv

AD > - 4 E > - 4 E >

 $2Q$

Proof: Let V_1, \ldots, V_r (resp. V'_1, \ldots, V'_s) be the irreducible components of V (resp. V'). Let $\phi\colon V\to V'$ be a homeomorphism. We know that $\phi(V_i)$ is an irreducible component of V' for all $j = 1, ..., r$. Then $r = s$ and by reordering the indices if necessary, we can assume that $\phi(V_j)=V'_j$ for all $j=1,...,r.$ Since deg $V =$ deg $V_1 + ... +$ deg V_r and $\deg\, V'=\deg\, V'_1+\ldots+\deg\, V'_r,$ we may assume that $\,V$ and $\,V'$ are irreducible projective hypersurfaces.

オート オート オート

Let us recall that the cohomology ring of \mathbb{CP}^{n+1} is isomorphic to $\mathbb{Z}[{\sf x}]/({\sf x}^{n+2})$ and it is generated by the generator α of $H^2(\mathbb{CP}^{n+1}, \mathbb{Z})$. Let $\iota: V \to \mathbb{CP}^{n+1}$ be the inclusion. By Lefschetz theorem and our assumption, $\iota^*: H^2({\mathbb C}{\mathbb P}^{n+1},{\mathbb Z}) \to H^2(V,{\mathbb Z})$ is an isomorphism. In particular, the element $\alpha_{\bm V}=\iota^*(\alpha)$ is a generator of $H^2(V,\mathbb{Z})$.

オート オート オート

 Ω

三

Since we have a canonical epimorphism $H^{2n}(V,\mathbb{Z}) \to H_{2n}(V,\mathbb{Z})^*$ we see that these spaces are isomorphic. In fact, the mapping $H^{2n}(\mathbb{CP}^{n+1},\mathbb Z)\to H^{2n}(V,\mathbb Z)$ is dual to the mapping $H_{2n}(V,\mathbb Z)\rightarrow H_{2n}(\mathbb{CP}^{n+1},\mathbb Z).$ Since V as a topological cycle is equivalent to deg $V \cdot H$, where H is a hyperplane (i.e. a generator of $H_{2n}(\mathbb{CP}^{n+1},\mathbb Z))$ we see that the mapping $H_{2n}(V,\mathbb{Z})\rightarrow H_{2n}(\mathbb{CP}^{n+1},\mathbb{Z})$ is multiplication by deg $V.$ Hence also the mapping $H^{2n}(\mathbb{CP}^{n+1},\mathbb{Z})\to H^{2n}(V,\mathbb{Z})$ is multiplication by deg $V.$ This means that $\iota^*(\alpha^n)=\alpha_V^n=$ deg $V\cdot [V]^*$ where $[V]^*$ is the (dual) fundamental class.

イロメ イ押 トイモ トイモ トーモ

Now let $\alpha_{\boldsymbol{V}'}$ be a generator of $H^2(V',{\mathbb Z})$ constructed in an analogous way to α_V . Hence by symmetry we have $\alpha_{V'}^n =$ deg $V' \cdot [V']^*$. Let $\phi \colon V \to V'$ be a homeomorphism. Hence $\phi^*(\alpha_{V'}) = \pm \alpha_V$. Thus

$$
\pm \deg V'[V]^* = \phi^*(\deg V'[V']^*) = \phi^*(\alpha_{V'}^n) = \pm \alpha_V^n = \pm \deg V'[V]^*.
$$

Hence deg $V = \deg V'$.

イ押 トラ ミュ エトリー

 \equiv

Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be two complex analytic functions with $n > 4$. Assume that there is a bi-Lipschitz homeomorphism $\varphi\colon (\mathbb{C}^n, V(f), 0) \to (\mathbb{C}^n, V(g), 0)$. If there is a homeomorphism h: $E_0(V(f)) \to E_0(V(g))$ then $m(V(f), 0) = m(V(g), 0)$.

マイ アンドラ エンド・エンジン こうしょう こうしょう こうしょう

Thus, we obtain the following:

Corollary If Metric Question B has a positive answer then Metric Question A has a positive answer as well.

オター・オティ オティ

 \equiv

 $2Q$

In this section, we consider real algebraic varieties. We prove the following:

Theorem Let $\iota : \mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^n$ be an algebraic embedding. Let $X = \iota(\mathbb{P}^1 \times \mathbb{P}^2).$ If deg X is odd then the link of the cone $C(X)$ is diffeomorphic to the twisted product $S^1 \stackrel{\sim}{\times} S^2$. If deg X is even, then every connected link of $C(X)$ is diffeomorphic either to $\mathbb{P}^1 \times \mathbb{P}^2$ or to $\mathbb{P}^1 \times \mathcal{S}^2$ and both cases are possible.

へのへ

Proof: Denote by A_k, B_l the Veronese embedding of \mathbb{P}^1 and \mathbb{P}^2 of degree k and l respectively. Now let $\phi: A_k \times B_l \rightarrow \mathbb{P}^{N(k,l)}$ be a suitable Segre embedding and denote by $W_{k,l}$ the image $\phi(A_k \times B_l)$. As in the previous section, we see that deg $W_{k,l} = 3kl$. Let $X_{k,l} = C(W_{k,l})$ be the cone with base $W_{k,l}$. Additionally denote by L_k , the link of this cone.

オート オート オート

By the constructions every base $W_{k,1}$ is the union of planes

$$
X=\bigcup_{a\in A_k}\phi(\{a\}\times\mathbb{P}^2).
$$

This means that $X_{k,1}$ is the union of 3-planes which have the plane $\phi(\{\mathsf{a}\}\times\mathbb{P}^2)$ at infinity and go through the point $O=(0,...,0).$ Similarly $X_{\mathbb{1},l}$ is the union of planes which have the line $\phi_1(\mathbb{P}^1\times \{a\})$ at infinity and go through the point $O=(0,...,0).$

 4 and 3 and 2 and 3 and 3 and 3

Thus the link of $X_{k,1}$ is a union of spheres and the link of $X_{1,l}$ is a union of circles. In fact, it is easy to observe that the former link is a sphere bundle over \mathbb{P}^1 whose projection is a composition of the projection $\rho:\mathbb{R}^8\setminus\{0\}\to\mathbb{P}^7$ and the projection $q:\mathbb{P}^1\times\mathbb{P}^2\to\mathbb{P}^1$. Similarly the link of $X_{1,k}$ is a circle bundle over \mathbb{P}^2 whose projection is a composition of the projection $\rho:\mathbb{R}^8\setminus\{0\}\to\mathbb{P}^7$ and the projection $q:\mathbb{P}^1\times \mathbb{P}^2\to \mathbb{P}^2.$ In particular, both links are connected. Note that the link $L_{1,1}$ has the structure of a circle bundle over \mathbb{P}^2 and the structure of a sphere bundle over $\mathbb{P}^1.$

 4 and 3 and 2 and 3 and 3 and 3

We have:

Lemma If the link over a cone with base $\mathbb{P}^1 \times \mathbb{P}^2$ is connected, then it is diffeomorphic either to $\mathbb{P}^1 \times \mathbb{P}^2$, or to $\mathbb{P}^1 \times S^2$, or to the twisted product $S^1 \overset{\sim}{\times} S^2 = S^1 \times S^2/G$, where G is the group generated by the involution $g:S^1\times S^2\ni (x,p)\mapsto (-x,-p)\in S^1\times S^2.$

Since the link $L_{k,1}$ is a sphere bundle over $\mathbb{P}^1,$ we have an exact sequence

$$
0 = \pi_1(S^2) \to \pi_1(L_{k,1}) \to \pi_1(\mathbb{P}^1) \to 0,
$$

hence $\pi_1({\mathcal L}_{k,1})=\pi_1({\mathbb P}^1)={\mathbb Z}.$

Thus the link $L_{1,1}$ has to be diffeomorphic either to the twisted product $S^1 \times S^2$ or to $\mathbb{P}^1 \times S^2$.

4 桐 ト 4 三 ト 4 三 ト

 $2Q$

Using the theory of Seifert manifolds we exclude the second possibility. Indeed, the following lemma is true:

Lemma If M is an orientable, Seifert fibered space with orbit surface \mathbb{P}^2 and less than two exceptional fibers, then M is homeomorphic either to a lens space $L(4n, 2n - 1)$, or to a Seifert space with orbit space \mathcal{S}^2 and three exceptional fibers with two of them of index two, or to a connected sum of two copies of $\mathbb{P}^3.$ All the relevant fundamental groups are finite except $\pi_1(\mathbb{P}^3 \# \mathbb{P}^3) = \mathbb{Z}/2 * \mathbb{Z}/2.$

 4 and 3 and 2 and 3 and 3 and 3

In particular, we see that the space $\mathbb{P}^1 \times \mathcal{S}^2$ with fundamental group $\mathbb Z$ cannot be the total space of a circle bundle over $\mathbb P^2.$ Thus $L_{1,1}$ is diffeomorphic to $S^1 \times S^2$.

A + + = + + = +

Now consider the link $L_{1,2}$. Since it is a circle bundle over \mathbb{P}^2 it can be diffeomorphic either to $\mathbb{P}^1 \times \mathbb{P}^2$ or to the twisted product $S^1 \times S^2$. If the second possibility holds then we can lift an analytic mapping $W_{1,1} \to W_{1,2}$ to an analytic mapping $L_{1,1} \to L_{1,2}$ which preserves the Hopf fibration. This means in the terminology of our paper from Compositio ("On the Fukui-Kurdyka-Paunescu Conjecture") that there is an a-invariant subanalytic bi-Lipschitz mapping from $X_{1,1}$ to $X_{1,2}$. But this mapping has a-invariant graph and again by our paper we have deg $X_{1,1} = \deg X_{1,2}$ mod 2, a contradiction. Hence $L_{1,2}=\mathbb{P}^1\times\mathbb{P}^2.$

マーター マーティング アイディー

 \equiv

Now consider the link $L_{2,1}$. Its fundamental group is \mathbb{Z} , hence it is diffeomorphic either to the twisted product $S^1 \stackrel{\sim}{\times} S^2$ or to $\mathbb{P}^1 \times S^2.$ By the same argument as above the first possibility is excluded. Hence $L_{2,1} = \mathbb{P}^1 \times S^2$.

To finish our proof we need the following:

Lemma Let $C(X) \subset \mathbb{R}^n$ be an algebraic cone of dimension $d > 1$ with connected base X. If deg $C(X)$ is odd, then the link of $C(X)$ is connected.

オター・オティ オティ

 \equiv

 $2Q$

Let X be as in Theorem and assume deg $C(X)$ is odd. If the link L of $C(X)$ is not equal to the twisted product $S^1 \mathop{\times}^\sim S^2$, then either $L = L_{1,2}$ or $L = L_{2,1}$. Since the degrees of the cones $X_{1,2}$ and $X_{2,1}$ are even, arguing as above we get a contradiction. In the same way we can prove that if deg $C(X)$ is even, then the link L cannot be diffeomorphic to $L_{1,1} = S^1 \times S^2$.

へのへ

There exist three semi-algebraically and bi-Lipschitz equivalent algebraic cones $C(X)$, $C(Y)$, $C(Z) \subset \mathbb{R}^8$ with non-homeomorphic smooth algebraic bases. In fact, $X\cong \mathbb{P}^1\times \mathbb{P}^2$, $Y\cong \mathbb{P}^1\times S^2$ and $Z \cong S^1 \times S^2$. In particular, the real version of General Metric Question B has a negative answer.

There exist four-dimensional algebraic cones $C(X),$ $C(Y) \subset \mathbb{R}^8$ and a semi-algebraic bi-Lipschitz homeomorphism $\phi : C(X) \to C(Y)$ which transforms every ray Ox into the ray $O\phi(x)$ isometrically, but there is no homeomorphism $C(X) \to C(Y)$ which transforms every generatrix onto a generatrix.

 Ω

ィタト ィラト ィラト

Let $C(X)$, $C(Y)$ be as in Theorem. If such a homeomorphism $C(X) \rightarrow C(Y)$ exists, then it induces a homeomorphism $X \rightarrow Y$, a contradiction.

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

 \equiv

 $2Q$

(1) The manifolds $S^1\times S^2$ and $S^1\times S^2$ are not diffeomorphic to projective varieties of odd degree.

(2) Let $\iota: \mathbb{P}^n \to \mathbb{P}^N$ be an algebraic embedding. If deg $\iota(\mathbb{P}^n)$ is odd, then the link of $C(\iota(\mathbb{P}^n))$ is \mathcal{S}^n , while if $\deg\iota(\mathbb{P}^n)$ is even, then the link of $C(\iota(\mathbb{P}^n))$ is disconnected.

(3) A simply connected real projective variety of positive dimension cannot have odd degree.

4 桐 ト 4 三 ト 4 三 ト

へのへ

THANK YOU FOR THE ATTENTION!!!!!

A. Fernandes, Z. Jelonek, J. E. Sampaio [Bi-Lipschitz equivalent cones with different degrees](#page-0-0)

メロメメ 御 メメ きょくきょうき

 2990