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In 1971, O. Zariski proposed many questions and the most known
among them is the following.

Question A. Let f , g : (Cn, 0)→ (C, 0) be two complex
analytic functions. If there is a homeomorphism
ϕ : (Cn,V (f ), 0)→ (Cn,V (g), 0), is it true that the
multiplicities m(V (f ), 0) and m(V (g), 0) are equal?
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This is still an open problem. The stated version of Question A is
Zariski’s famous Multiplicity Conjecture. Recently, Zariski’s
Multiplicity Conjecture for families with isolated singularities was
confirmed by Fernández de Bobadilla and Pe lka.
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We can consider the Zariski’s Multiplicity Conjecture from the
Lipschitz point of view:

General Metric Conjecture. Let X ⊂ Cn and Y ⊂ Cm be two
complex analytic sets with dimX = dimY = d . If their germs at
zero are bi-Lipschitz homeomorphic, then their multiplicities
m(X , 0) and m(Y , 0) are equal.
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Bobadilla, Fernandes and Sampaio proved that this Conjecture has
a positive answer for d = 2. The positive answer for d = 1 was
already known, since Neumann and Pichon, with previous
contributions of Pham and Teissier and Fernandes, proved that the
Puiseux pairs of plane curves are invariant under bi-Lipschitz
homeomorphisms, and as a consequence the multiplicity of
complex analytic curves with any codimension is invariant under
bi-Lipschitz homeomorphisms.
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However, in dimension three, Birbrair, Fernandes, Sampaio and
Verbitsky have presented examples of complex algebraic cones X
and Y with isolated singularity, which were bi-Lipschitz
homeomorphic but with different multiplicities at the origin. Their
proof was based on the theory of Smale-Barden manifolds.
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The first aim of this Lecture is to generalize this result. We show
that for every k ≥ 3 there exist complex algebraic cones of
dimension k with isolated singularities, which are bi-Lipschitz and
semi-algebraically equivalent but have different degrees. Our proof
is completely different than this of Birbrair, Fernandes, Sampaio
and Verbitsky and it is based on the Steenrod Theorem about
sphere bundles.
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Let us recall:

Zariski Question B. (we give here somewhat simplified
version) Let f , g : (Cn, 0)→ (C, 0) be two complex analytic
functions. If there is a homeomorphism
ϕ : (Cn,V (f ), 0)→ (Cn,V (g), 0), is there a homeomorphism
h : E0(V (f ))→ E0(V (g)) ?

Here E0(V (f )) denotes the base of the cone tangent to V (f ) at 0.
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This problem has a negative answer, as shown by Fernández de
Bobadilla in 2005. However, in the bi-Lipschitz case it still makes
sense and is still open:

Metric Question B. Let f , g : (Cn, 0)→ (C, 0) be two
complex analytic functions. If there is a bi-Lipschitz
homeomorphism ϕ : (Cn,V (f ), 0)→ (Cn, V (g), 0), is there a
homeomorphism h : E0(V (f ))→ E0 (V (g))?
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The second question that we have in mind has the following more
general statement:

General Metric Question B. Let X ⊂ Cn and Y ⊂ Cm be
two complex analytic sets with dimX = dimY = d . If (X , 0)
and (Y , 0) are bi-Lipschitz homeomorphic, is there a
homeomorphism h : E0(X )→ E0(Y )?
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Kollár proved that if X ⊂ CPn+1 is a smooth projective
hypersurface of dimension greater than one, then the degree of X
is determined by the underlying topological space of X . Moreover
Barthel and Dimca proved that in the case of projective
hypersurfaces (possibly with singularities) of dimension greater
than one, degree one is a topological invariant. Here we generalize
these results to dimension n > 2. More precisely, we prove the
following:

Theorem. Let V ,V ′ ⊂ CPn+1 be two projective hypersurfaces.
Assume n > 2. If V is homeomorphic to V ′, then degV = degV ′.
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As a consequence of this result, we show, that a positive answer to
Metric Question B implies a positive answer to the following :

Metric Question A. Let f , g : (Cn, 0)→ (C, 0) be two
complex analytic functions. If there is a bi-Lipschitz
homeomorphism ϕ : (Cn,V (f ), 0)→ (Cn,V (g), 0), is it true
that m(V (f ), 0) = m(V (g), 0)?
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In the final part of this lecture, we classify links of real cones with
base P1 × P2. As an application, we give examples of manifolds ,
which are not diffeomorphic to projective manifolds of odd degree.

Finally, we give an example of three four-dimensional real algebraic
cones in R8 with isolated singularity which are semi-algebraically
and bi-Lipschitz equivalent but have non-homeomorphic bases. In
particular, the real version of General Metric Question B has a
negative answer.
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Definition

Let X ⊂ Rn and Y ⊂ Rm be two sets and let h : X → Y .

1. We say that h is Lipschitz if there exists a positive constant
C such that

‖h(x)− h(y)‖ ≤ C‖x − y‖, ∀x , y ∈ X .

2. We say that h is bi-Lipschitz if h is a homeomorphism, it is
Lipschitz and its inverse is also Lipschitz. In this case, we say
that X and Y are bi-Lipschitz equivalent. When n = m and
h is the restriction of a bi-Lipschitz homeomorphism
H : Rn → Rn, we say that X and Y are ambient bi-Lipschitz
equivalent.
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Definition

Let X ⊂ Pn be an algebraic variety. Then by an algebraic cone
C (X ) ⊂ Pn+1 with base X we mean the set

C (X ) =
⋃
x∈X

O, x ,

where O is the center of coordinates in Rn+1, and O, x means the
projective line which goes through O and x . By an affine cone
C (X ) we mean C (X ) \ X .
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Proposition

Let C (X ) and C (Y ) be affine cones in RN . Assume that their links
are bi-Lipschitz (semi-algebraically) equivalent. Then they are
bi-Lipschitz (semi-algebraically) equivalent. Moreover, if
dimC (X ) = dimC (Y ) = d , 2d + 2 ≤ N and C (X ) is
semi-algebraically bi-Lipschitz equivalent to C (Y ), then they are
ambient semi-algebraically bi-Lipschitz equivalent.
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Theorem

Let Ck denotes the Veronese embedding of degree k of CP1 into
CPk . Let n ≥ 2 and consider the varieties Xk,n = φ(Ck × CPn−1),
where φ is the Segre embedding. Then for fixed n all varieties Xk,n

have different degrees degXk,n = kn and among the cones C (Xk,n)
there are infinitely many cones which are bi-Lipschitz and
semi-algebraically equivalent.
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Proof: Note that Ck is kCP1 as a cycle. Hence
Ck × CPn−1 ∼ kCP1 × CPn−1. Since after the Segre embedding
degCP1 × CPn−1 = n, we have deg Xk,n = kn. Using a generic
projection, we can assume that all Xk,n are in CP2n+1. By
construction, Xk,n is the union of projective (n − 1)-planes

X =
⋃

a∈Ck
φ({a}×CPn−1). This means that C (Xk,n) is the union

of n-planes which has the (n− 1)-plane φ({a} ×CPn−1) at infinity
and goes through the point O = (0, ..., 0).
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Thus the link Lk,n of this cone is a union of (2n − 1)-spheres. In
fact using the Ehresmann Theorem, it is easy to observe that these
links are sphere bundles over Ck

∼= S2 with projection being the a
composition of a projection p : CP2n+1 \ {0} → CP2n and the
projection q : Ck × CPn−1 → Ck . By the Steenrod Theorem
topologically there are only two such sphere bundles.
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On the other hand on a compact manifold of dimension different
from four there are only a finite number of differential structures.
This means that all manifolds Lk,n , k = 1, 2, ..., can have only a
finite number of different differential structures. By the Dirichlet
box principle, among all Xk,n there is an infinite family S whose
members are diffeomorphic to each other.
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By result of Kollar all links from the family S are Nash
diffeomorphic. in particular they are bi-Lipschitz and
semi-algebraically equivalent. Hence we see that all cones
C (X ),X ∈ S, are bi-Lipschitz and semi-algebraically equivalent.
But all members of the family {C (X ) : X ∈ S} have different
degrees.
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Corollary

For every n ≥ 3 there exist two analytic n dimensional germs
V ,V ′ ⊂ (C2n, 0) with isolated singularities, which are bi-Lipschitz,
sub-analytically equivalent, but have different multiplicities at 0.
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Theorem

Let V ,V ′ ⊂ CPn+1 be two projective hypersurfaces. Assume
n > 2. If V is homeomorphic to V ′, then degV = degV ′.
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Proof: Let V1, . . . ,Vr (resp. V ′1, . . . ,V
′
s ) be the irreducible

components of V (resp. V ′). Let φ : V → V ′ be a
homeomorphism. We know that φ(Vj) is an irreducible component
of V ′ for all j = 1, ..., r . Then r = s and by reordering the indices
if necessary, we can assume that φ(Vj) = V ′j for all j = 1, ..., r .
Since degV = degV1 + ...+ degVr and
degV ′ = degV ′1 + ...+ degV ′r , we may assume that V and V ′ are
irreducible projective hypersurfaces.
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Let us recall that the cohomology ring of CPn+1 is isomorphic to
Z[x ]/(xn+2) and it is generated by the generator α of
H2(CPn+1,Z). Let ι : V → CPn+1 be the inclusion. By Lefschetz
theorem and our assumption, ι∗ : H2(CPn+1,Z)→ H2(V ,Z) is an
isomorphism. In particular, the element αV = ι∗(α) is a generator
of H2(V ,Z).
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Since we have a canonical epimorphism H2n(V ,Z)→ H2n(V ,Z)∗

we see that these spaces are isomorphic. In fact, the mapping
H2n(CPn+1,Z)→ H2n(V ,Z) is dual to the mapping
H2n(V ,Z)→ H2n(CPn+1,Z). Since V as a topological cycle is
equivalent to degV · H, where H is a hyperplane (i.e. a generator
of H2n(CPn+1,Z)) we see that the mapping
H2n(V ,Z)→ H2n(CPn+1,Z) is multiplication by degV . Hence
also the mapping H2n(CPn+1,Z)→ H2n(V ,Z) is multiplication by
degV . This means that ι∗(αn) = αn

V = degV · [V ]∗ where [V ]∗ is
the (dual) fundamental class.

A. Fernandes, Z. Jelonek, J. E. Sampaio Bi-Lipschitz equivalent cones with different degrees



Now let αV ′ be a generator of H2(V ′,Z) constructed in an
analogous way to αV . Hence by symmetry we have
αn
V ′ = degV ′ · [V ′]∗. Let φ : V → V ′ be a homeomorphism. Hence
φ∗(αV ′) = ±αV . Thus

± degV ′·[V ]∗ = φ∗(degV ′·[V ′]∗) = φ∗(αn
V ′) = ±αn

V = ± degV ·[V ]∗.

Hence degV = degV ′.
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Corollary

Let f , g : (Cn, 0)→ (C, 0) be two complex analytic functions with
n > 4. Assume that there is a bi-Lipschitz homeomorphism
ϕ : (Cn,V (f ), 0)→ (Cn,V (g), 0). If there is a homeomorphism
h : E0(V (f ))→ E0(V (g)) then m(V (f ), 0) = m(V (g), 0).
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Thus, we obtain the following:

Corollary If Metric Question B has a positive answer then Metric
Question A has a positive answer as well.
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In this section, we consider real algebraic varieties. We prove the
following:

Theorem Let ι : P1 × P2 → Pn be an algebraic embedding. Let
X = ι(P1 × P2). If degX is odd then the link of the cone C (X ) is

diffeomorphic to the twisted product ˜S1 × S2. If degX is even,
then every connected link of C (X ) is diffeomorphic either to
P1 × P2 or to P1 × S2 and both cases are possible.
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Proof: Denote by Ak ,Bl the Veronese embedding of P1 and P2 of
degree k and l respectively. Now let φ : Ak × Bl → PN(k,l) be a
suitable Segre embedding and denote by Wk,l the image
φ(Ak × Bl). As in the previous section, we see that deg
Wk,l = 3kl . Let Xk,l = C (Wk,l) be the cone with base Wk,l .
Additionally denote by Lk,l the link of this cone.
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By the constructions every base Wk,1 is the union of planes

X =
⋃
a∈Ak

φ({a} × P2).

This means that Xk,1 is the union of 3-planes which have the plane
φ({a} × P2) at infinity and go through the point O = (0, ..., 0).
Similarly X1,l is the union of planes which have the line
φ1(P1 × {a}) at infinity and go through the point O = (0, ..., 0).
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Thus the link of Xk,1 is a union of spheres and the link of X1,l is a
union of circles. In fact, it is easy to observe that the former link is
a sphere bundle over P1 whose projection is a composition of the
projection p : R8 \ {0} → P7 and the projection q : P1 × P2 → P1 .
Similarly the link of X1,k is a circle bundle over P2 whose
projection is a composition of the projection p : R8 \ {0} → P7 and
the projection q : P1 × P2 → P2. In particular, both links are
connected. Note that the link L1,1 has the structure of a circle
bundle over P2 and the structure of a sphere bundle over P1.
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We have:
Lemma If the link over a cone with base P1 × P2 is connected,
then it is diffeomorphic either to P1 × P2, or to P1 × S2, or to the
twisted product ˜S1 × S2 = S1 × S2/G , where G is the group
generated by the involution
g : S1 × S2 3 (x , p) 7→ (−x ,−p) ∈ S1 × S2.
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Since the link Lk,1 is a sphere bundle over P1, we have an exact
sequence

0 = π1(S2)→ π1(Lk,1)→ π1(P1)→ 0,

hence π1(Lk,1) = π1(P1) = Z.
Thus the link L1,1 has to be diffeomorphic either to the twisted

product ˜S1 × S2 or to P1 × S2.
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Using the theory of Seifert manifolds we exclude the second
possibility. Indeed, the following lemma is true:

Lemma If M is an orientable, Seifert fibered space with orbit
surface P2 and less than two exceptional fibers, then M is
homeomorphic either to a lens space L(4n, 2n − 1), or to a Seifert
space with orbit space S2 and three exceptional fibers with two of
them of index two, or to a connected sum of two copies of P3. All
the relevant fundamental groups are finite except
π1(P3#P3) = Z/2 ∗ Z/2.
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In particular, we see that the space P1 × S2 with fundamental
group Z cannot be the total space of a circle bundle over P2. Thus
L1,1 is diffeomorphic to ˜S1 × S2.
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Now consider the link L1,2. Since it is a circle bundle over P2 it can
be diffeomorphic either to P1 × P2 or to the twisted product

˜S1 × S2. If the second possibility holds then we can lift an analytic
mapping W1,1 →W1,2 to an analytic mapping L1,1 → L1,2 which
preserves the Hopf fibration. This means in the terminology of our
paper from Compositio (”On the Fukui-Kurdyka-Paunescu
Conjecture”) that there is an a-invariant subanalytic bi-Lipschitz
mapping from X1,1 to X1,2. But this mapping has a-invariant graph
and again by our paper we have degX1,1 = degX1,2 mod 2, a
contradiction. Hence L1,2 = P1 × P2.
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Now consider the link L2,1. Its fundamental group is Z, hence it is

diffeomorphic either to the twisted product ˜S1 × S2 or to P1 × S2.
By the same argument as above the first possibility is excluded.
Hence L2,1 = P1 × S2.
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To finish our proof we need the following:

Lemma Let C (X ) ⊂ Rn be an algebraic cone of dimension d > 1
with connected base X . If degC (X ) is odd, then the link of C (X )
is connected.
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Let X be as in Theorem and assume deg C (X ) is odd. If the link L

of C (X ) is not equal to the twisted product ˜S1 × S2, then either
L = L1,2 or L = L2,1. Since the degrees of the cones X1,2 and X2,1

are even, arguing as above we get a contradiction. In the same way
we can prove that if deg C (X ) is even, then the link L cannot be

diffeomorphic to L1,1 = ˜S1 × S2.
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Theorem

There exist three semi-algebraically and bi-Lipschitz equivalent
algebraic cones C (X ),C (Y ),C (Z ) ⊂ R8 with non-homeomorphic
smooth algebraic bases. In fact, X ∼= P1 × P2, Y ∼= P1 × S2 and
Z ∼= ˜S1 × S2. In particular, the real version of General Metric
Question B has a negative answer.
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Corollary

There exist four-dimensional algebraic cones C (X ),C (Y ) ⊂ R8 and
a semi-algebraic bi-Lipschitz homeomorphism φ : C (X )→ C (Y )
which transforms every ray Ox into the ray Oφ(x) isometrically,
but there is no homeomorphism C (X )→ C (Y ) which transforms
every generatrix onto a generatrix.

A. Fernandes, Z. Jelonek, J. E. Sampaio Bi-Lipschitz equivalent cones with different degrees



Let C (X ),C (Y ) be as in Theorem. If such a homeomorphism
C (X )→ C (Y ) exists, then it induces a homeomorphism X → Y ,
a contradiction.
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Theorem

(1) The manifolds S1 × S2 and ˜S1 × S2 are not diffeomorphic to
projective varieties of odd degree.
(2) Let ι : Pn → PN be an algebraic embedding. If deg ι(Pn) is
odd, then the link of C (ι(Pn)) is Sn, while if deg ι(Pn) is even,
then the link of C (ι(Pn)) is disconnected.
(3) A simply connected real projective variety of positive dimension
cannot have odd degree.
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