MATERIAŁY XXI KONFERENCJI SZKOLENIOWEJ Z GEOMETRII ANALITYCZNEJ I ALGEBRAICZNEJ ZESPOLONEJ

 $\mathbf{2000}$

Łódź

str. 13

ELEMENTARY PROOF OF FINITELY GENERATENESS OF A SUBRING OF $\mathbf{k}[t]$

Marek Karaś (Kraków)

Abstract

In this note we present an elementary proof of the known fact that any subring $R \subset \mathbf{k}[t]$ which contains a field \mathbf{k} , where $\mathbf{k}[t]$ is the ring of polynomials in one variable, is finitely generated \mathbf{k} -algebra.

1 Introductions

By \mathbb{N}, \mathbb{Z} we denote the sets of natural and integer numbers, respectively. We assume that $0 \in \mathbb{N}$. By $\mathbf{k}, \mathbf{k}[t], \mathbf{k}[X_1, \ldots, X_n]$ and $\mathbf{k}(X_1, \ldots, X_n)$ we denote a field, ring of polynomials in one variable, ring of polynomials in n variables and field of rational functions in n variables, respectively.

The fourteenth problem of Hilbert is the following question:

1 Let $L \subset \mathbf{k}(X_1, \ldots, X_n)$ be arbitrary subfield such that $\mathbf{k} \subset L$. Is $L \cap \mathbf{k}[X_1, \ldots, X_n]$ a finitely generated \mathbf{k} -algebra?

More general question is the following:

2 Let $R \subset \mathbf{k}[X_1, \ldots, X_n]$ be arbitrary subring such that $\mathbf{k} \subset R$. Is R a finitely generated \mathbf{k} -algebra?

For n > 1 answer to the second question is, in general, negative. For some more details see e.g. [1]. For n = 1 answer is given by the following known

Theorem 1 If R is a subring of $\mathbf{k}[t]$ such that $\mathbf{k} \subset R$ then R is a finitely generated \mathbf{k} -algebra.

In this note an elementary proof of the above Theorem is given. In our proof we use only one simple fact from elementary number theory and linear algebra.

2 Numerical Lemma

If $k, l \in \mathbb{Z}$ and $k = l \cdot m$ for some $m \in \mathbb{Z}$ then we will write l|k. If $k, l, m \in \mathbb{Z}$ and m|(k-l) then we will write $k \equiv l \pmod{m}$. For any $m_1, \ldots, m_n \in \mathbb{Z}$ by $\operatorname{GCD}(m_1, \ldots, m_n)$ we denote the greatest common divisor of numbers m_1, \ldots, m_n and assume that $\operatorname{GCD}(m_1, \ldots, m_n) \in \mathbb{N}$.

Lemma 2 ([2] Thm. I.2) Let $n \in \mathbb{N}$, $m_1, \ldots, m_n \in \mathbb{N}$ and $\text{GCD}(m_1, \ldots, m_n) = d$. There exists $l_0 \in \mathbb{N}$ such that if $l \geq l_0$ and d|l then there exist $l_1, \ldots, l_n \in \mathbb{N}$ such that

$$l = l_1 m_1 + \ldots + l_n m_n.$$

Proof: Let

$$\varepsilon_j = jd$$
 for $j = 0, 1, \dots, u = \frac{m_1}{d} - 1$

There exist $l_{j,1}, \ldots, l_{j,n} \in \mathbb{Z}, j = 0, 1, \ldots, u$, such that

$$\varepsilon_j = l_{j,1}m_1 + \ldots + l_{j,n}m_n$$

Let

$$I_j = \{i \in \{1, \dots, n\} : l_{j,i} < 0\}, \qquad j = 0, 1, \dots, u$$

For

$$\tilde{\varepsilon}_{i} = \varepsilon_{i} + \sum_{i \in I_{i}} (|l_{i,i}|m_{1})m_{i}$$

we have

$$\tilde{\varepsilon}_i \equiv \varepsilon_i \pmod{m_1}$$

and

$$\tilde{\varepsilon}_j = \sum_{i \notin I_j} l_{j,i} m_i + \sum_{i \in I_j} (l_{j,i} + |l_{j,i}| m_1) m_i, \quad \text{for } j = 0, 1, \dots, u.$$

Thus $\tilde{\varepsilon}_0, \ldots, \tilde{\varepsilon}_u$ can be written as linear combinations of m_1, \ldots, m_n with coefficients from \mathbb{N} .

For any $l \ge l_0 = \max{\{\tilde{\varepsilon}_0, \dots, \tilde{\varepsilon}_u\}}$ such that d|l there exists $j \in \{0, 1, \dots, u\}$ such that

$$l \equiv \varepsilon_j \,(\mathrm{mod}\, m_1).$$

14

Thus

$$l = \tilde{\varepsilon}_i + \tilde{l}m_1$$

for some $\tilde{l} \in \mathbb{N}$, and so l can be written as a linear combination of m_1, \ldots, m_n with coefficients from \mathbb{N} . \Box

Proof of the Theorem 3

We can assume that $\mathbf{k} \neq R$. Let

$$R_p = \{ f \in R : \deg f \le p \} \quad \text{for } p \in \mathbb{N}.$$

The set R_p , for any $p \in \mathbb{N}$, is a finite dimensional linear space over **k**. Let

$$M = \{ \deg f : f \in R \setminus \mathbf{k} \}.$$

We have

$$M = \{m_1, m_2, \ldots\},\$$

where $m_1, m_2, \ldots \in \mathbb{N}$. Let

$$\mu_1 = m_1, \, \mu_2 = \operatorname{GCD}(m_1, m_2), \dots, \, \mu_n = \operatorname{GCD}(m_1, \dots, m_n), \dots$$

We have

$$\mu_n \ge \mu_{n+1}$$
 and $\mu_n \in \mathbb{N}$ for $n \in \mathbb{N}$

Thus there exists $n_0 \in \mathbb{N}$ such that

$$\mu_{n_0} = \mu_{n_0+k} \quad \text{for} \quad k \in \mathbb{N}.$$

We put $\mu = \mu_{n_0}$. Let $f_1, \ldots, f_{n_0} \in R$ be such that

deg
$$f_i = m_i$$
 for $i = 1, \ldots, n_0$

and g_1, \ldots, g_s be any basis of the **k**-linear space R_{l_0} , where l_0 is from Lemma 2 (for numbers m_1, \ldots, m_{n_0}).

Let $f \in R$ be arbitrary. If deg $f \leq l_0$ then

$$f = a_1 g_1 + \ldots + a_s g_s$$

for some $a_1, \ldots, a_s \in \mathbf{k}$. If deg $f > l_0$ then $\mu | \text{deg } f$ and by Lemma 2 there exist $l_1, \ldots, l_{n_0} \in \mathbb{N}$ such that

$$\deg f = l_1 \deg f_1 + \ldots + l_{n_0} \deg f_{n_0}.$$

Then there exists $a \in \mathbf{k}$ such that

$$\deg \left(f - a f_1^{l_1} \cdot \ldots \cdot f_{n_0}^{l_{n_0}}\right) < \deg f.$$

,

$$\deg (f - \tilde{f}) \le l_0.$$

The above inequality means that $f - \tilde{f} \in R_{l_0}$, and finally we get that

$$f \in \mathbf{k}[g_1, \ldots, g_s, f_1, \ldots, f_{n_0}]$$

References

- A. Nowicki, Przykład Freudenburga do czternastego problemu Hilberta, Materiały XX Konferencji Szkoleniowej z Geometrii Analitycznej i Algebraicznej Zespolonej, Łódź 1999
- [2] W. Sierpiński, Teoria liczb tom II, Monografie Matematyczne tom 38, Warszawa 1959.

Lódź, 10 – 14 stycznia 2000 r.