MATERIAŁY NA XXXVI KONFERENCJĘ Z GEOMETRII ANALITYCZNEJ I ALGEBRAICZNEJ

2015 Łódź str. 17

BIFURCATION VALUES

AND TRAJECTORIES OF GRADIENT FIELDS

Michał Klepczarek¹ (Łódź)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a semialgebraic analytic function and λ be a bifurcation value of *f*. We prove that there exists a trajectory $x : (\alpha, \beta) \to \mathbb{R}^n$ of the gradient field of *f* such that $\lim_{t\to\alpha} f(x(t)) = \lambda$ or $\lim_{t\to\beta} f(x(t)) = \lambda$.

INTRODUCTION

In the 1960s René Thom [Th1] gave conditions ensuring the local topological triviality of smooth mappings. It turns out that for every polynomial $f: \mathbb{C}^n \to \mathbb{C}$ there exists a finite subset $\Sigma \subset \mathbb{C}$ such that the function f is a locally trivial fibration over $\mathbb{C} \setminus \Sigma$. The smallest such subset of \mathbb{C} is called the set of bifurcation values of the function *f*. In the case of complex polynomials with isolated singularities at infinity, due to the works of Pham and Parusiński (see [Ph] and [Pa]), it is well known that the set of bifurcation values of *f* consists of critical values of *f* and regular values at which the Malgrange condition fails. Many mathematicians tried to characterize the bifurcation set in more general case introducing different conditions such as: quasi-tameness, Malgrange condition, M-tameness.

¹This research was partially supported by the National Science Centre (NCN), grant UMO-2012/07/B/ST1/03293.

²⁰¹⁰ Mathematics Subject Classification. 34A26, 34C08, 14P10, 32Sxx.

Key words and phrases. bifurcation values, asymptotic critical values, trajectories, Nash functions, trivialisation.

Usually when we want to construct a trivialization of *f* over a neighbourhood of a regular value *c* we use the flow of *∇f*. Therefore, it is important to study the properties of possible trajectories of *∇f*. It is well known that any bounded trajectory *x* of an analytic function *f* has a limit point. Moreover, Thom conjectured that such a trajectory has a tangent at its limit point. This claim is known as the Gradient Conjecture and was solved by Kurdyka, Parusiński and Mostowski (see [KMP] and [KM]). Using similar techniques a related theorem on the behaviour of the incisors at infinity was proved by Grandjean $([Gr])$. He showed that if *x* is a bounded trajectory of the gradient field of a semialgebraic function *f* of class C^2 , then there exists a limit $x(t)/||x(t)||$. In this work Grandjean also shows that if $f(x(t)) \to \lambda$ then λ is the asymptotic critical value of the function *f*.

In this paper we investigate an opposite question in some way. We prove that for each bifurcation value λ of a semialgebraic analytic function (i.e Nash function) $f: \mathbb{R}^n \to \mathbb{R}$ we can find a trajectory $x: (\alpha, \beta) \to \mathbb{R}^n$ such that

$$
\lim_{t \to \alpha} f \circ x(t) = \lambda \quad \lor \quad \lim_{t \to \beta} f \circ x(t) = \lambda,
$$

i.e. the set of bifurcation values of f is contained in the set of values λ satisfying the above condition. The examples show that this set is substantially smaller than the set of asymptotic critical values.

In the proof, we use the flow of ∇f and some properties of differential equations.

1. Preliminaries

Denote by $F: G \to \mathbb{R}^n$ a mapping defined on an open subset $G \subset \mathbb{R}^{n+1}$ and consider the following system of differential equations

$$
(1) \t x' = F(t, x)
$$

where $x = (x_1, ..., x_n)$. Assuming that through each point $(\tau, \eta) \in G$ there passes exactly one integral solution $\gamma(\tau, \eta) : I(\tau, \eta) \to \mathbb{R}^n$ of (1) defined on an open interval $I(\tau, \eta)$, we can define a set

$$
V = \{(\tau, \eta, t) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}; (\tau, \eta) \in G, t \in I(\tau, \eta)\}
$$

and a mapping $\Phi: V \to \mathbb{R}^n$ by

$$
\Phi(\tau, \eta, t) = \gamma(\tau, \eta)(t) \ (\tau, \eta, t) \in V.
$$

The mapping Φ is called the general solution of system (1).

It is well known that the general solution of system (1) is of the same class as the mapping F (see for example [Na]). Namely we have

Theorem 1. *class of solution If the mapping* F *is of class* C^m $(C^{\infty},$ *analitic) than the general solution of system (1) exists and is also of class* C^m (C^{∞} , analitic).

In this paper we consider a particular type of system (1) where $G = \mathbb{R} \times W$ for some open set $W \subset \mathbb{R}^n$ and $F(t, x) = \nabla f(x)$ for $(t, x) \in G$. Any integral solution of system

$$
(2) \t\t x' = \nabla f(x)
$$

18

we call a trajectory of the field gradient field of f (field *∇f* in short).

An autonomy of the system (2) allows arbitrary time movements.

Proposition 2. *time movement Let* $f : W \to \mathbb{R}$ *be a function of class* C^2 *and* $\Phi: V \to W$ *be a general solution of system (2). For any point* $(t_1, \xi, t_2) \in V$ *and* $any \ t_0 \in \mathbb{R} \ there \ is \ (t_1 - t_0, \xi, t_2 - t_0) \in V \ and$

$$
\Phi(t_1, \xi, t_2) = \Phi(t_1 - t_0, \xi, t_2 - t_0).
$$

In particular,

(3)
$$
\Phi(t_1, \xi, t_2) = \Phi(0, \xi, t_2 - t_1) = \Phi(t_1 - t_2, \xi, 0).
$$

Proof. Let $\gamma = \gamma(t_1, \xi) : (\alpha, \beta) \to W$ be the trajectory of the ∇f field such that *γ*(*t*₁) = *ξ*. Then a mapping γ^* : ($\alpha - t_0$, $\beta - t_0$) \rightarrow *W* defined as

$$
\gamma^*(t) = \gamma(t + t_0)
$$

is the only trajectory that passes through $(t_1 - t_0, \xi)$. Indeed,

$$
\gamma^*(t_1 - t_0) = \gamma(t_1 - t_0 + t_0) = \gamma(t_1) = \xi,
$$

$$
(\gamma^*)'(t) = \gamma'(t + t_0) = \nabla f(\gamma(t + t_0)) = \nabla f(\gamma^*(t)) \text{ for } t \in (\alpha - t_0, \beta - t_0).
$$

Therefore,

 $\mathbf T$

$$
\Phi(t_1, \xi, t_2) = \gamma(t_2) = \gamma(t_2 - t_0 + t_0) = \gamma(t_2 - t_0) = \Phi(t_1 - t_0, \xi, t_2 - t_0),
$$

which completes the proof.

2. Main result

Let $W \subset \mathbb{R}^n$, $U \subset \mathbb{R}$ be open sets. We say that the function $f: W \to U$ of class C^{∞} is a C^{∞} fibration over *U* if there exists $y \in U$ and a mapping $\Psi_1 : W \to$ $f^{-1}(y)$ such that the mapping

$$
\Psi = (\Psi_1, f) : W \ni x \mapsto (\Psi_1(x), f(x)) \in f^{-1}(y) \times U
$$

is a diffeomorphism of class C^{∞} . The mapping Ψ is called a trivialisation *f* of class C^{∞} over *U*.

We say that $\lambda \in \mathbb{R}$ is a typical value of a function $f: W \to \mathbb{R}$ if f is a C^{∞} fibration over some neighbourhood of λ . Any number λ that is not a typical value of f is called a bifurcation value of f. By $B(f)$ we denote the set of all bifurcation values of *f*.

It is well known that for semialgebraic function $f : \mathbb{R}^n \to \mathbb{R}$ of class C^1 we have *B*(*f*) \subset *K*(*f*), where

$$
K(f) = \{ \lambda \in \mathbb{R} : \exists_{x_k \in \mathbb{R}^n} f(x_k) \to \lambda \wedge (1 + ||x_k||) ||\nabla f(x_k)|| \to 0 \}
$$

is the set of generalized critical values of *f*. Clearly $K(f) = K_0(f) \cup K_\infty(f)$, where

$$
K_{\infty}(f) = \{ \lambda \in \mathbb{R} : \exists_{x_k \in \mathbb{R}^n} ||x_k|| \to \infty \land f(x_k) \to \lambda \land (1 + ||x_k||) ||\nabla f(x_k)|| \to 0 \}
$$

is called the set of asymptotic critical values of f and $K_0(f)$ is the set of critical values of f. In our case $f : \mathbb{R}^n \to \mathbb{R}$ is an analytic semialgebraic function and the set $K(f)$ is finite (see for example [KOS]). Moreover, values of f along each trajectory of the gradient field converge to a certain critical value. More precisely,

Theorem 3. *konceladuja* $w K(f) Let f : \mathbb{R}^n \to \mathbb{R}$ *be an analytic semilgebraic function. For each trajectory* γ : $(\alpha, \beta) \to \mathbb{R}^n$ *of the gradient field we have*

$$
\lim_{t \to \alpha} (f \circ \gamma)(t) \in K(f) \quad \wedge \quad \lim_{t \to \beta} (f \circ \gamma)(t) \in K(f).
$$

If the set $\gamma_{\alpha,\delta}$ is unbounded for some $\delta \in (\alpha,\beta)$ the proof of the first equation can be found in [Gr]. In the case where $\gamma_{\vert (\alpha,\delta]}$ is bounded we can use Łojasiewicz Theorem [Lo] to show that $\lim_{t\to\alpha} f(\gamma(t)) = f(x_1) \in K_0(f)$ for some $x_1 \in \mathbb{R}^n$.

Our aim is to prove the following theorem:

Theorem 4. *tw eng Let* $f : \mathbb{R}^n \to \mathbb{R}$ *be an analytic semialgebraic function and* λ_0 *be a bifurcation value of f. There exists a trajectory* $\gamma : (\alpha, \beta) \to \mathbb{R}^n$ *of the field ∇f such that*

$$
\lim_{t \to \alpha} (f \circ \gamma)(t) = \lambda_0 \quad \lor \quad \lim_{t \to \beta} (f \circ \gamma)(t) = \lambda_0.
$$

Unfortunately the implication in the above theorem cannot be reversed. If we denote by $A(f)$ the set of all λ for which there exists trajectory *γ* : $(\alpha, \beta) \rightarrow \mathbb{R}^n$ of the field ∇f such that $\lim_{t \to \alpha} (f \circ \gamma)(t) = \lambda_0$ or $\lim_{t\to\beta}(f\circ\gamma)(t) = \lambda_0$, then we have $B(f) \subseteq A(f) \subseteq K(f)$. We will illustrate this fact with examples.

Example 1. Let $f(x, y) = y^3, (x, y) \in \mathbb{R}^2$.

Obviously $B(f) = \emptyset$ and $K(f) = 0$ and the trajectories are of the form

$$
\gamma_{C_1,C_2}^1(t) = (C_1, -\frac{1}{3t + C_2}) \qquad t \in (-\infty, -\frac{C_2}{3}),
$$

$$
\gamma_{C_1,C_2}^2(t) = (C_1, -\frac{1}{3t + C_2}) \qquad t \in (-\frac{C_2}{3}, \infty),
$$

$$
\gamma_{C_1}^3(t) = (C_1, 0) \qquad t \in (-\infty, \infty).
$$

Consequently $\emptyset = B(f) \subsetneq A(f) = K(f) = \{0\}.$

Example 2. Let $f(x,y) = \frac{y}{1+x^2}$, $(x,y) \in \mathbb{R}^2$. Consider the system $(x', y') =$ $\nabla f(x, y)$, i.e. the following system

(4)
$$
x' = -\frac{2xy}{(1+x^2)^2}, \quad y' = \frac{1}{1+x^2}
$$

and let $\gamma = (\gamma_x, \gamma_y) : (\alpha, \beta) \to \mathbb{R}^2$ be a trajectory of field ∇f .

If there exists $t_0 \in (\alpha, \beta)$ such that $\gamma_x(t_0) = 0$, then $\gamma(t) = (0, t)$ for $t \in \mathbb{R}$ and lim_{*t*→∞} $f(\gamma(t)) = \infty$.

Now assume that $\gamma_x(t) \neq 0$ for $t \in (\alpha, \beta)$. In this case by dividing equations in (4) we get

(5)
$$
ln|\gamma_x(t)| + \frac{1}{2}\gamma_x^2(t) = -\gamma_y^2(t) + C
$$

for some constant $C \in \mathbb{R}$. From $K_0(f) = \emptyset$ we conclude $\lim_{t \to \beta} ||\gamma(t)|| = \infty$.

20

- (a) If $\lim_{t\to\beta} |\gamma_x(t)| = \infty$ then (5) gives a contradiction.
- (b) If $\lim_{t\to\beta} |\gamma_y(t)| = \infty$ then from (5) we have $\lim_{t\to\beta} \gamma_x(t) = 0$. Therefore $\lim_{t\to\beta} f(\gamma(t)) = \infty$.

Using the same argument, we get $\lim_{t\to\alpha} f(\gamma(t)) = -\infty$. Summing up, we have $\emptyset = B(f) = A(f) \subsetneq K(f) = \{0\}.$

3. Proof of Theorem 4

We will precede the proof of Theorem 4 by two lemmas and a proposition.

Lemma 5. *darboux ang Let* $\lambda_0 \in \mathbb{R}$ *and U be an open interval such that* $U \setminus {\lambda_0} \subset$ $\mathbb{R} \setminus K(f)$ *. For any trajectory* $\gamma : (\alpha, \beta) \to \mathbb{R}^n$ *satisfying*

- (i) $f(γ(α, β)) ∩ U ≠ ∅$
- (ii) $\lim_{t\to\alpha} f \circ \gamma(t) \neq \lambda_0 \neq \lim_{t\to\beta} f \circ \gamma(t)$,

the inclusion $U \subset f(\gamma(\alpha, \beta))$ *holds.*

Proof. Supposing the contrary, that there exists $y_0 \in U$ such that

$$
\forall_{t \in (\alpha,\beta)} f \circ \gamma(t) \neq y_0.
$$

Consider any $y_1 \in f(\gamma(\alpha, \beta)) \cap U$. Assume that $y_1 < y_0$. From the Darboux property we have

$$
\forall_{t \in (\alpha,\beta)} \ f \circ \gamma(t) < y_0.
$$

Since $f \circ \gamma$ is a nondecreasing function (because $(f \circ \gamma)'(t) = ||\gamma'(t)||^2 \geq 0$), so

$$
\lim_{t \to \beta} (f \circ \gamma)(t) \in [y_1, y_0] \subset U \subset (\mathbb{R} \setminus K(f)) \cup \{\lambda_0\}.
$$

From the assumption (ii) we get that $\lim_{t\to\beta}(f\circ\gamma)(t)\in\mathbb{R}\setminus K(f)$. On the other hand from Theorem 3 we have $\lim_{t\to\beta}(f\circ\gamma)(t)\in K(f)$ which gives a contradiction. In the case *y*₁ *> y*₀ consider lim_{*t→α*}(*f* ∘ γ)(*t*) similarly as above. □

Suppose that $\lambda_0 \in f(\mathbb{R}^n)$ and $\nabla f(x) \neq 0$ for $x \in f^{-1}(\lambda_0)$. Take any $\varepsilon > 0$ such that $(\lambda_0 - \varepsilon, \lambda_0 + \varepsilon) \cap K(f) \subset {\lambda_0}$. Denote $U = (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$ and let $\Phi: V \to f^{-1}(U)$ be the general solution of the system $x' = \nabla f(x)$, where $V =$ $\{(\tau, \eta, t) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}; (\tau, \eta) \in \mathbb{R} \times f^{-1}(U), t \in I(\tau, \eta)\}.$ Additionally, we will assume that each trajectory $\gamma : (\alpha, \beta) \to \mathbb{R}^n$ of the field $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ satisfies :

(ii)
$$
\lim_{t \to \alpha} f \circ \gamma(t) \neq \lambda_0 \neq \lim_{t \to \beta} f \circ \gamma(t).
$$

For that specified λ_0, U, V, Φ we introduce the following indications.

For $x \in f^{-1}(U)$ we define t_x as a real number for which $f \circ \Phi(0, x, t_x) = \lambda_0$. We show that

Fact 1. The number t_x is well defined.

Indeed, suppose that there exists $x_0 \in f^{-1}(U)$ such that

$$
\Phi(0, x_0, t) \notin f^{-1}(\lambda_0)
$$
 for $t \in I(0, x_0)$.

Then there exists a trajectory $\gamma : (\alpha, \beta) \to \mathbb{R}^n$ satisfying (ii) and

$$
f(\gamma(0)) = f(x_0) \in U \quad \wedge \quad \lambda_0 \notin f(\gamma(\alpha, \beta)),
$$

which contradicts Lemma 5. The uniqueness of t_x follows immediately from

$$
(f \circ \gamma)'(t) = \|\nabla f(\gamma(t))\|^2 > 0, \ \ t \in I(0, x_0),
$$

as $\nabla f(x) \neq 0$ for $x \in f^{-1}(U)$. This gives the assertion of the Fact 1.

Now let $\xi \in f^{-1}(U)$ and $\mu \in U$. Denote by t^{μ}_{ξ} a real number for which $f \circ$ $\Phi(t^{\mu}_{\xi}, \xi, 0) = \mu$. By using Property 2 ($\Phi(t^{\mu}_{\xi}, \xi, 0) = \Phi(0, \xi, -t^{\mu}_{\xi})$) similarly as above we can show that:

Fact 2. The number t^{μ}_{ξ} is well defined.

The smoothness of *f* implies the following

Fact 3. The functions

$$
T: f^{-1}(U) \ni x \to t_x \in \mathbb{R},
$$

$$
T^*: f^{-1}(U) \times U \ni (\xi, \mu) \to t_{\xi}^{\mu} \in \mathbb{R}
$$

are smooth.

Indeed, take any $x_0 \in f^{-1}(U)$. By definition, t_x satisfies

$$
(f \circ \Phi)(0, x_0, t_{x_0}) = \lambda_0
$$

and the function $(f \circ \Phi)(0, \cdot, \cdot)$ is of class C^{∞} (see Theorem 1) such that

$$
(f \circ \Phi)'_t(0, x_0, t_{x_0}) = (f \circ \gamma)'_t(t_{x_0}) = ||\nabla f(\gamma(t_{x_0})||^2 > 0,
$$

where $\gamma = \gamma(0, x_0)$. Thus, using the Implicit Function Theorem, there are neighbourhoods: *H* of x_0 and *K* of t_{x_0} and a function $R: H \to K$ such that for every $x \in H$ the point $t = R(x)$ is the only solution of

$$
(f \circ \Phi)(0, x, t) = \lambda_0
$$

in *K*. Moreover, *R* is of C^{∞} class. In consequence $R = T_H$, so the function *T* is smooth. The smothness of the function T^* can be obtained analogously by considering the function $(\xi, \mu, t) \rightarrow (f \circ \Phi)(0, \xi, -t) - \mu$.

Proposition 6. *wl ang Let* $\lambda_0 \in f(\mathbb{R}^n)$, $\nabla f(x) \neq 0$ *for* $x \in f^{-1}(\lambda_0)$ *and let* $(\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$ ∩ $K(f)$ ⊂ $\{\lambda_0\}$ *for some* $\varepsilon > 0$ *. Denote* $U = (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$ *. If every trajectory of* $x' = \nabla f(x)$ *satisfies* (ii), *then*

(a) $\Phi(t_1, \Phi(0, x, t_1), 0) = x$ *for* $x \in f^{-1}(U)$ *,* $t_1 \in I(0, x)$ (b) $t = t_{\Phi(0)}^{f(x)}$ $f^{(x)}_{\Phi(0,x,t)}$ *for* $x \in f^{-1}(U)$, $t \in I(0,x)$.

Proof. (a) Let $\gamma = \gamma(0, x) : I(0, x) \to f^{-1}(U)$. Take any $t_1 \in I(0, x)$ and denote *ξ* = $γ(t_1) = Φ(0, x, t_1)$. Then

$$
\Phi(t_1, \Phi(0, x, t_1), 0) = \Phi(t_1, \xi, 0) = \gamma(0) = x.
$$

(b) Let $\xi = \Phi(0, x, t)$ and $\gamma = \gamma(0, x)$. Obviously, $\gamma(t) = \xi$. Therefore

$$
(f \circ \Phi)(t, \xi, 0) = f(\gamma(0)) = f(x).
$$

Moreover, from the definition of t^{μ}_{ξ} we have

$$
(f \circ \Phi)(t_{\xi}^{f(x)}, \xi, 0) = f(x),
$$

and taking into account Proposition 2 and the monotonicity of $f \circ \gamma$, we obtain $t = t_{\xi}^{f(x)} = t_{\Phi(0)}^{f(x)}$ $\Phi(0,x,t)$. В последните последните последните последните последните последните последните последните последните последн
В 1990 година от селото на сел

Lemma 7. *trywializacja eng Under the assumptions of Proposition 6,* λ_0 *is a typical value of f.*

Proof. Let $V = \{ (\tau, \eta, t) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}; (\tau, \eta) \in \mathbb{R} \times f^{-1}(U), t \in I(\tau, \eta) \}$ and $\Phi: V \to f^{-1}(U)$ be a general solution of $x' = \nabla f(x)$ (in $f^{-1}(U)$). Define a mapping

$$
\Psi: f^{-1}(U) \ni x \to (\Phi(0, x, t_x), f(x)) \in f^{-1}(\lambda_0) \times U, \Theta: f^{-1}(\lambda_0) \times U \ni (\xi, \mu) \to \Phi(t_{\xi}^{\mu}, \xi, 0) \in f^{-1}(U).
$$

Clearly Ψ and Θ are of class C^{∞} . We will show that $\Psi = \Theta^{-1}$. Take any $x \in f^{-1}(U)$. Then *f*(*x*)

$$
\Theta \circ \Psi(x) = \Theta(\Phi(0, x, t_x), f(x)) = \Phi(t_{\Phi(0, x, t_x)}^{1(x)}, \Phi(0, x, t_x), 0).
$$

Using Proposition 6 we get

$$
\Theta \circ \Psi(x) = \Phi(t_{\Phi(0,x,t_x)}^{f(x)}, \Phi(0,x,t_x), 0) = \Phi(t_x, \Phi(0,x,t_x), 0) = x.
$$

Now consider any $(\xi, \mu) \in f^{-1}(\lambda_0) \times U$ and denote $\gamma = \gamma(0, \xi)$. From Lemma 5 there exists $t_0 \in I(0,\xi)$ such that $(f \circ \gamma)(t_0) = \mu$. Denote $x = \gamma(t_0)$. Then $\xi =$ $\Phi(0, x, t_x)$ and $\mu = f(x)$. Using Proposition 6 we have $t_{\xi}^{\mu} = t_{\Phi(0, x, t_x)}^{f(x)} = t_x$ and

$$
\Phi(t_{\xi}^{\mu}, \xi, 0) = \Phi(t_x, \Phi(0, x, t_x), 0) = x.
$$

Therefore

$$
(\Psi \circ \Theta)(\xi, \eta) = \Psi(\Phi(t_{\xi}^{\mu}, \xi, 0)) = \Psi(x) = = (\Phi(0, x, t_x), f(x))) = (\xi, \mu).
$$

Summarising, $\Psi = \Theta^{-1}$ and Ψ is C^k trivialisation of *f* over *U*.

Now we can proceed to the proof of Theorem 4.

Proof of Theorem 3. Firstly, let us consider the case when $\lambda \in K_0(f)$. Take any $x_0 \in \mathbb{R}^n$ such that $\nabla f(x_0) = 0$. Then $\gamma : \mathbb{R} \to \mathbb{R}^n$, $\gamma(t) = x_0$ for $t \in \mathbb{R}$, is the trajectory of ∇f field satisfying $\lambda_0 = \lim_{t \to \infty} f \circ \gamma(t)$.

Now let $\lambda_0 \in (B(f) \setminus K_0(f)) \cap f(\mathbb{R}^n)$ and suppose that for each trajectory $\gamma : (\alpha, \beta) \to \mathbb{R}^n$ there is

(ii)
$$
\lim_{t \to \alpha} (f \circ \gamma)(t) \neq \lambda_0 \neq \lim_{t \to \beta} (f \circ \gamma)(t).
$$

The finiteness of $K(f)$ allows us to take an open interval U such that $K(f)$ and $U \cap K(f) \subset \{\lambda_0\}$. Using Lemma 7 we get that λ_0 is a typical value of *f*, which is contrary to the assumptions.

Finally, let $\lambda_0 \in B(f) \setminus f(\mathbb{R}^n)$. Then λ_0 must belong to the closure of $f(\mathbb{R}^n)$ ($f_{|\emptyset}$ is a C^{∞} fibration). Take any open interval *U* such that $U \cap K(f) \subset {\lambda_0}$ and $f(x_0) = y_0 \in U \cap f(\mathbb{R}^n)$. If $\lambda_0 = \sup f(\mathbb{R}^n)$ then using Theorem 3 for trajectory $\gamma : (\alpha, \beta) \to \mathbb{R}^n$ such that $\gamma(0) = x_0$, we have lim_{*t*→} β </sub>($f \circ \gamma$)(*t*) $\in U \cap K(f) \subset \{\lambda_0\}$, which proves the claim in this case. In the case of $\lambda_0 = \inf f(\mathbb{R}^n)$ we consider $\lim_{t \to \alpha} (f \circ \gamma)(t)$.

Acknowledgement. I would like to thank Stanisław Spodzieja for many conversations and valuable advice.

REFERENCES

- [Gr] V. Grandjean, *On the limit set at infinity of a gradient trajectory of a semialgebraic function*, J. Differential Equations 233 (2007) 22-41.
- [KM] K. Kurdyka, T. Mostowski, *The gradient conjecture of R. Thom*, preprint, 1999.
- [KMP] K. Kurdyka, T. Mostowski, A. Parusiński, *Proof of the gradient conjecture of R. Thom*, Ann. of Math. 152 (2000) 763-792.
- [KOS] K. Kurdyka, P. Orro, S. Simon *Semialgebraic Sard theorem for generalized critical values*, J. Differential Geom. 56 (2000), no. 1, 67–92.
- [KSp] K. Kurdyka, S. Spodzieja, *Separation of real algebraic sets and the Łojasiewicz exponent*, to appear in Proc. Amer. Math. Soc. 142 (2014), no. 9, 3089–3102.
- [Lo] S. Łojasiewicz, *Sur les trajectoires du gradient d'une fonction analytique*, Seminari di Geometria 1982-1983, Universit`*a* di Bologna, Istituto di Geometria, Dipartamento di Matematica, 115-117, 1984.
- [Na] R.Narasimahan, *Analysis on Real and Complex Manifolds*, North-Holland Math. Library, vol. 35, North-Holland Publishing Co., Amsterdam, 1985, reprint of the 1973 edition, $xiv+246$ pp.
- [Pa] A. Parusiński, *On the bifurcation set of complex polynomial with isolated singularities* Compos. Math 97 (1995), 369-384
- [Ph] F. Pham, *La descente des cols par les onglets de Lefschets, avec vues sur Gauss-Manin*, Systemes diffrentiels et singularites (Luminy, 1983), Asterisque 130 (1983), 11-47
- [Sk] G. Skalski, *On analytic equivalence of functions at infinity*. Bull. Sci. Math. 135 (2011), no. 5, 517–530.
- [Sp] S. Spodzieja, *Trywializacja wielomianu w nieskończoności a warunek Malgrange'a*, Materiały na XXVIII Konferencję Szkoleniową z Geometrii Analitycznej I Algebraicznej Zespolonej, Wyd. UŁ, Łódź 2007 (in polish).
- [Th1] R. Thom, *Ensembles et morphismes stratifies* , Bull. Amer. Math. Soc 75 (1969) 240-282
- [Th2] R. Thom, *Proble*`*mes rencontr´es dans mon parcours math´ematique: un bilan*, Publ. Math. IHES 70 (1989), 200-214.

WARTOŚCI BIFURKACYJNE I TRAJEKTORIE POLA GRADIENTOWEGO

Niech *f* : R *ⁿ →* R będzie semialgebraiczną funkcją analityczną i niech *λ* będzie wartością bifurkacyjną funkcji *f*. W pracy dowodzimy, że istnieje trajektoria $x : (\alpha, \beta) \to \mathbb{R}^n$ pola gradientowego funkcji *f* taka, że lim_{*t*→*α*} $f(x(t)) = \lambda$ lub $\lim_{t\to\beta} f(x(t)) = \lambda.$

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, University of Łódź S. Banacha 22, 90-238 Łódź, Poland E-mail: mikimiki88@tlen.pl

Łódź, 5 – 9 stycznia 2015 r.