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BIFURCATION VALUES

AND TRAJECTORIES OF GRADIENT FIELDS

Michał Klepczarek 1 (Łódź)

Let f : Rn → R be a semialgebraic analytic function and λ be a bifurcation
value of f . We prove that there exists a trajectory x : (α, β)→ Rn of the gradient
field of f such that limt→α f(x(t)) = λ or limt→β f(x(t)) = λ.

Introduction

In the 1960s René Thom [Th1] gave conditions ensuring the local topological
triviality of smooth mappings. It turns out that for every polynomial f : Cn → C
there exists a finite subset Σ ⊂ C such that the function f is a locally trivial fi-
bration over C \ Σ. The smallest such subset of C is called the set of bifurcation
values of the function f . In the case of complex polynomials with isolated singula-
rities at infinity, due to the works of Pham and Parusiński (see [Ph] and [Pa]), it
is well known that the set of bifurcation values of f consists of critical values of f
and regular values at which the Malgrange condition fails. Many mathematicians
tried to characterize the bifurcation set in more general case introducing different
conditions such as: quasi-tameness, Malgrange condition, M-tameness.
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Usually when we want to construct a trivialization of f over a neighbourhood
of a regular value c we use the flow of ∇f . Therefore, it is important to study the
properties of possible trajectories of ∇f . It is well known that any bounded tra-
jectory x of an analytic function f has a limit point. Moreover, Thom conjectured
that such a trajectory has a tangent at its limit point. This claim is known as the
Gradient Conjecture and was solved by Kurdyka, Parusiński and Mostowski (see
[KMP] and [KM] ). Using similar techniques a related theorem on the behaviour
of the incisors at infinity was proved by Grandjean ([Gr]). He showed that if x is
a bounded trajectory of the gradient field of a semialgebraic function f of class
C2, then there exists a limit x(t)/‖x(t)‖. In this work Grandjean also shows that
if f(x(t))→ λ then λ is the asymptotic critical value of the function f .

In this paper we investigate an opposite question in some way. We prove that
for each bifurcation value λ of a semialgebraic analytic function (i.e Nash function)
f : Rn → R we can find a trajectory x : (α, β)→ Rn such that

lim
t→α

f ◦ x(t) = λ ∨ lim
t→β

f ◦ x(t) = λ,

i.e. the set of bifurcation values of f is contained in the set of values λ satisfying
the above condition. The examples show that this set is substantially smaller than
the set of asymptotic critical values.

In the proof, we use the flow of ∇f and some properties of differential equations.

1. Preliminaries

Denote by F : G→ Rn a mapping defined on an open subset G ⊂ Rn+1 and
consider the following system of differential equations

(1) x′ = F (t, x)

where x = (x1, ..., xn). Assuming that through each point (τ, η) ∈ G there passes
exactly one integral solution γ(τ, η) : I(τ, η) → Rn of (1) defined on an open
interval I(τ, η), we can define a set

V = {(τ, η, t) ∈ R× Rn × R; (τ, η) ∈ G, t ∈ I(τ, η)}
and a mapping Φ : V → Rn by

Φ(τ, η, t) = γ(τ, η)(t) (τ, η, t) ∈ V.
The mapping Φ is called the general solution of system (1).

It is well known that the general solution of system (1) is of the same class as
the mapping F (see for example [Na]). Namely we have

Theorem 1. class of solution If the mapping F is of class Cm (C∞, analitic) than
the general solution of system (1) exists and is also of class Cm (C∞, analitic).

In this paper we consider a particular type of system (1) where G = R×W for
some open set W ⊂ Rn and F (t, x) = ∇f(x) for (t, x) ∈ G. Any integral solution
of system

(2) x′ = ∇f(x)
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we call a trajectory of the field gradient field of f (field ∇f in short).
An autonomy of the system (2) allows arbitrary time movements.

Proposition 2. time movement Let f : W → R be a function of class C2 and
Φ : V → W be a general solution of system (2). For any point (t1, ξ, t2) ∈ V and
any t0 ∈ R there is (t1 − t0, ξ, t2 − t0) ∈ V and

Φ(t1, ξ, t2) = Φ(t1 − t0, ξ, t2 − t0).

In particular,

(3) Φ(t1, ξ, t2) = Φ(0, ξ, t2 − t1) = Φ(t1 − t2, ξ, 0).

Proof. Let γ = γ(t1, ξ) : (α, β)→W be the trajectory of the ∇f field such that
γ(t1) = ξ. Then a mapping γ∗ : (α− t0, β − t0)→W defined as

γ∗(t) = γ(t+ t0)

is the only trajectory that passes through (t1 − t0, ξ). Indeed,

γ∗(t1 − t0) = γ(t1 − t0 + t0) = γ(t1) = ξ,

(γ∗)′(t) = γ′(t+ t0) = ∇f(γ(t+ t0)) = ∇f(γ∗(t)) for t ∈ (α− t0, β − t0).

Therefore,

Φ(t1, ξ, t2) = γ(t2) = γ(t2 − t0 + t0) = γ(t2 − t0) = Φ(t1 − t0, ξ, t2 − t0),

which completes the proof. �

2. Main result

Let W ⊂ Rn, U ⊂ R be open sets. We say that the function f : W → U of
class C∞ is a C∞ fibration over U if there exists y ∈ U and a mapping Ψ1 : W →
f−1(y) such that the mapping

Ψ = (Ψ1, f) : W 3 x 7→ (Ψ1(x), f(x)) ∈ f−1(y)× U
is a diffeomorphism of class C∞. The mapping Ψ is called a trivialisation f of class
C∞ over U .

We say that λ ∈ R is a typical value of a function f : W → R if f is a C∞

fibration over some neighbourhood of λ. Any number λ that is not a typical value
of f is called a bifurcation value of f . By B(f) we denote the set of all bifurcation
values of f .

It is well known that for semialgebraic function f : Rn → R of class C1 we have
B(f) ⊂ K(f), where

K(f) = {λ ∈ R : ∃xk⊂Rnf(xk)→ λ ∧ (1 + ‖xk‖)‖∇f(xk)‖ → 0}
is the set of generalized critical values of f . Clearly K(f) = K0(f)∪K∞(f), where

K∞(f) = {λ ∈ R : ∃xk⊂Rn‖xk‖ → ∞∧ f(xk)→ λ ∧ (1 + ‖xk‖)‖∇f(xk)‖ → 0}
is called the set of asymptotic critical values of f and K0(f) is the set of critical
values of f . In our case f : Rn → R is an analytic semialgebraic function and
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the set K(f) is finite (see for example [KOS]). Moreover, values of f along each
trajectory of the gradient field converge to a certain critical value. More precisely,

Theorem 3. konceladuja w K(f) Let f : Rn → R be an analytic semilgebraic
function. For each trajectory γ : (α, β)→ Rn of the gradient field we have

lim
t→α

(f ◦ γ)(t) ∈ K(f) ∧ lim
t→β

(f ◦ γ)(t) ∈ K(f).

If the set γ|(α,δ] is unbounded for some δ ∈ (α, β) the proof of the first equation
can be found in [Gr]. In the case where γ|(α,δ] is bounded we can use Łojasiewicz
Theorem [Lo] to show that limt→α f(γ(t)) = f(x1) ∈ K0(f) for some x1 ∈ Rn.

Our aim is to prove the following theorem:

Theorem 4. tw eng Let f : Rn → R be an analytic semialgebraic function and λ0

be a bifurcation value of f . There exists a trajectory γ : (α, β) → Rn of the field
∇f such that

lim
t→α

(f ◦ γ)(t) = λ0 ∨ lim
t→β

(f ◦ γ)(t) = λ0.

Unfortunately the implication in the above theorem cannot be reversed.
If we denote by A(f) the set of all λ for which there exists trajectory
γ : (α, β) → Rn of the field ∇f such that limt→α(f ◦ γ)(t) = λ0

or limt→β(f ◦ γ)(t) = λ0, then we have B(f) ( A(f) ( K(f). We will illustra-
te this fact with examples.

Example 1. Let f(x, y) = y3, (x, y) ∈ R2.
Obviously B(f) = ∅ and K(f) = 0 and the trajectories are of the form

γ1
C1,C2(t) = (C1,−

1
3t+ C2

) t ∈ (−∞,−C2

3
),

γ2
C1,C2(t) = (C1,−

1
3t+ C2

) t ∈ (−C2

3
,∞),

γ3
C1(t) = (C1, 0) t ∈ (−∞,∞).

Consequently ∅ = B(f) ( A(f) = K(f) = {0}.

Example 2. Let f(x, y) = y
1+x2 , (x, y) ∈ R2. Consider the system (x′, y′) =

∇f(x, y), i.e. the following system

(4) x′ = − 2xy
(1 + x2)2 , y′ =

1
1 + x2

and let γ = (γx, γy) : (α, β)→ R2 be a trajectory of field ∇f .
If there exists t0 ∈ (α, β) such that γx(t0) = 0, then γ(t) = (0, t) for t ∈ R and

limt→∞ f(γ(t)) =∞.

Now assume that γx(t) 6= 0 for t ∈ (α, β). In this case by dividing equations in
(4) we get

(5) ln|γx(t)|+ 1
2
γ2
x(t) = −γ2

y(t) + C

for some constant C ∈ R. From K0(f) = ∅ we conclude limt→β ‖γ(t)‖ =∞.
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(a) If limt→β |γx(t)| =∞ then (5) gives a contradiction.
(b) If limt→β |γy(t)| = ∞ then from (5) we have limt→β γx(t) = 0. Therefore

limt→β f(γ(t)) =∞.
Using the same argument, we get limt→α f(γ(t)) = −∞. Summing up, we have

∅ = B(f) = A(f)⊂6=K(f) = {0}.

3. Proof of Theorem 4

We will precede the proof of Theorem 4 by two lemmas and a proposition.

Lemma 5. darboux ang Let λ0 ∈ R and U be an open interval such that U \{λ0} ⊂
R \K(f). For any trajectory γ : (α, β)→ Rn satisfying

(i) f(γ(α, β)) ∩ U 6= ∅
(ii) limt→α f ◦ γ(t) 6= λ0 6= limt→β f ◦ γ(t),

the inclusion U ⊂ f(γ(α, β)) holds.

Proof. Supposing the contrary, that there exists y0 ∈ U such that

∀t∈(α,β) f ◦ γ(t) 6= y0.

Consider any y1 ∈ f(γ(α, β))∩U . Assume that y1 < y0. From the Darboux property
we have

∀t∈(α,β) f ◦ γ(t) < y0.

Since f ◦ γ is a nondecreasing function (because (f ◦ γ)′(t) = ‖γ′(t)‖2 > 0), so

lim
t→β

(f ◦ γ)(t) ∈ [y1, y0] ⊂ U ⊂ (R \K(f)) ∪ {λ0}.

From the assumption (ii) we get that limt→β(f ◦ γ)(t) ∈ R \K(f). On the other
hand from Theorem 3 we have limt→β(f ◦γ)(t) ∈ K(f) which gives a contradiction.
In the case y1 > y0 consider limt→α(f ◦ γ)(t) similarly as above. �

Suppose that λ0 ∈ f(Rn) and ∇f(x) 6= 0 for x ∈ f−1(λ0). Take any ε > 0
such that (λ0 − ε, λ0 + ε) ∩ K(f) ⊂ {λ0}. Denote U = (λ0 − ε, λ0 + ε) and let
Φ : V → f−1(U) be the general solution of the system x′ = ∇f(x), where V =
{(τ, η, t) ∈ R × Rn × R; (τ, η) ∈ R × f−1(U), t ∈ I(τ, η)}. Additionally, we will
assume that each trajectory γ : (α, β)→ Rn of the field ∇f : Rn → Rn satisfies :

(ii) lim
t→α

f ◦ γ(t) 6= λ0 6= lim
t→β

f ◦ γ(t).

For that specified λ0, U, V,Φ we introduce the following indications.
For x ∈ f−1(U) we define tx as a real number for which f ◦Φ(0, x, tx) = λ0. We

show that

Fact 1. The number tx is well defined.

Indeed, suppose that there exists x0 ∈ f−1(U) such that

Φ(0, x0, t) /∈ f−1(λ0) for t ∈ I(0, x0).

Then there exists a trajectory γ : (α, β)→ Rn satisfying (ii) and

f(γ(0)) = f(x0) ∈ U ∧ λ0 /∈ f(γ(α, β)),
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which contradicts Lemma 5. The uniqueness of tx follows immediately from

(f ◦ γ)′(t) = ‖∇f(γ(t))‖2 > 0, t ∈ I(0, x0),

as ∇f(x) 6= 0 for x ∈ f−1(U). This gives the assertion of the Fact 1.

Now let ξ ∈ f−1(U) and µ ∈ U . Denote by tµξ a real number for which f ◦
Φ(tµξ , ξ, 0) = µ. By using Property 2 (Φ(tµξ , ξ, 0) = Φ(0, ξ,−tµξ )) similarly as above
we can show that:

Fact 2. The number tµξ is well defined.

The smoothness of f implies the following

Fact 3. The functions
T : f−1(U) 3 x→ tx ∈ R,

T ∗ : f−1(U)× U 3 (ξ, µ)→ tµξ ∈ R
are smooth.

Indeed, take any x0 ∈ f−1(U). By definition, tx satisfies

(f ◦ Φ)(0, x0, tx0) = λ0

and the function (f ◦ Φ)(0, ·, ·) is of class C∞ (see Theorem 1) such that

(f ◦ Φ)′t(0, x0, tx0) = (f ◦ γ)′t(tx0) = ‖∇f(γ(tx0)‖2 > 0,

where γ = γ(0, x0). Thus, using the Implicit Function Theorem, there are neigh-
bourhoods: H of x0 and K of tx0 and a function R : H → K such that for every
x ∈ H the point t = R(x) is the only solution of

(f ◦ Φ)(0, x, t) = λ0

in K. Moreover, R is of C∞ class. In consequence R = T|H , so the function T is
smooth. The smothness of the function T ∗ can be obtained analogously by consi-
dering the function (ξ, µ, t)→ (f ◦ Φ)(0, ξ,−t)− µ.

Proposition 6. wl ang Let λ0 ∈ f(Rn), ∇f(x) 6= 0 for x ∈ f−1(λ0) and let
(λ0 − ε, λ0 + ε) ∩ K(f) ⊂ {λ0} for some ε > 0. Denote U = (λ0 − ε, λ0 + ε). If
every trajectory of x′ = ∇f(x) satisfies (ii), then

(a) Φ(t1,Φ(0, x, t1), 0) = x for x ∈ f−1(U), t1 ∈ I(0, x)
(b) t = t

f(x)
Φ(0,x,t) for x ∈ f−1(U), t ∈ I(0, x).

Proof. (a) Let γ = γ(0, x) : I(0, x)→ f−1(U). Take any t1 ∈ I(0, x) and denote
ξ = γ(t1) = Φ(0, x, t1). Then

Φ(t1,Φ(0, x, t1), 0) = Φ(t1, ξ, 0) = γ(0) = x.

(b) Let ξ = Φ(0, x, t) and γ = γ(0, x). Obviously, γ(t) = ξ. Therefore

(f ◦ Φ)(t, ξ, 0) = f(γ(0)) = f(x).

Moreover, from the definition of tµξ we have

(f ◦ Φ)(tf(x)
ξ , ξ, 0) = f(x),
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and taking into account Proposition 2 and the monotonicity of f ◦ γ, we obtain
t = t

f(x)
ξ = t

f(x)
Φ(0,x,t). �

Lemma 7. trywializacja eng Under the assumptions of Proposition 6, λ0 is a
typical value of f .

Proof. Let V = {(τ, η, t) ∈ R × Rn × R; (τ, η) ∈ R × f−1(U), t ∈ I(τ, η)} and
Φ : V → f−1(U) be a general solution of x′ = ∇f(x) (in f−1(U)). Define a mapping

Ψ : f−1(U) 3 x→ (Φ(0, x, tx), f(x)) ∈ f−1(λ0)× U,
Θ : f−1(λ0)× U 3 (ξ, µ)→ Φ(tµξ , ξ, 0) ∈ f−1(U).

Clearly Ψ and Θ are of class C∞. We will show that Ψ = Θ−1. Take any x ∈ f−1(U).
Then

Θ ◦Ψ(x) = Θ(Φ(0, x, tx), f(x)) = Φ(tf(x)
Φ(0,x,tx),Φ(0, x, tx), 0).

Using Proposition 6 we get

Θ ◦Ψ(x) = Φ(tf(x)
Φ(0,x,tx),Φ(0, x, tx), 0) = Φ(tx,Φ(0, x, tx), 0) = x.

Now consider any (ξ, µ) ∈ f−1(λ0) × U and denote γ = γ(0, ξ). From Lemma 5
there exists t0 ∈ I(0, ξ) such that (f ◦ γ)(t0) = µ. Denote x = γ(t0). Then ξ =
Φ(0, x, tx) and µ = f(x). Using Proposition 6 we have tµξ = t

f(x)
Φ(0,x,tx) = tx and

Φ(tµξ , ξ, 0) = Φ(tx,Φ(0, x, tx), 0) = x.

Therefore
(Ψ ◦Θ)(ξ, η) = Ψ(Φ(tµξ , ξ, 0)) = Ψ(x) =

= (Φ(0, x, tx), f(x))) = (ξ, µ).
Summarising, Ψ = Θ−1 and Ψ is Ck trivialisation of f over U . �

Now we can proceed to the proof of Theorem 4.

Proof of Theorem 3. Firstly, let us consider the case when λ ∈ K0(f). Take any
x0 ∈ Rn such that ∇f(x0) = 0. Then γ : R → Rn, γ(t) = x0 for t ∈ R, is the
trajectory of ∇f field satisfying λ0 = limt→∞ f ◦ γ(t).

Now let λ0 ∈ (B(f) \ K0(f)) ∩ f(Rn) and suppose that for each trajectory
γ : (α, β)→ Rn there is

(ii) lim
t→α

(f ◦ γ)(t) 6= λ0 6= lim
t→β

(f ◦ γ)(t).

The finiteness of K(f) allows us to take an open interval U such that K(f) and
U ∩K(f) ⊂ {λ0}. Using Lemma 7 we get that λ0 is a typical value of f , which is
contrary to the assumptions.

Finally, let λ0 ∈ B(f) \ f(Rn). Then λ0 must belong to the closu-
re of f(Rn) (f|∅ is a C∞ fibration). Take any open interval U such that
U ∩ K(f) ⊂ {λ0} and f(x0) = y0 ∈ U ∩ f(Rn). If λ0 = sup f(Rn) then
using Theorem 3 for trajectory γ : (α, β) → Rn such that γ(0) = x0, we have
limt→β(f ◦ γ)(t) ∈ U ∩ K(f) ⊂ {λ0}, which proves the claim in this case. In the
case of λ0 = inf f(Rn) we consider limt→α(f ◦ γ)(t). �
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WARTOŚCI BIFURKACYJNE I TRAJEKTORIE POLA GRADIENTOWEGO

Niech f : Rn → R będzie semialgebraiczną funkcją analityczną i niech λ bę-
dzie wartością bifurkacyjną funkcji f . W pracy dowodzimy, że istnieje trajektoria
x : (α, β) → Rn pola gradientowego funkcji f taka, że limt→α f(x(t)) = λ lub
limt→β f(x(t)) = λ.
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