Blown-up Čech cohomology and Cartan's Theorem B in real algebraic geometry

Tomasz Kowalczyk

Jagiellonian University in Kraków

Łódź, January 10, 2019

Theorem 1 (Serre)

Let X be an affine variety over an algebraically closed field and \mathcal{F} be a coherent sheaf on X. Then $\check{H}^p(X, \mathcal{F}) = 0$ for p > 0.

(B)

Theorem 1 (Serre)

Let X be an affine variety over an algebraically closed field and \mathcal{F} be a coherent sheaf on X. Then $\check{H}^p(X, \mathcal{F}) = 0$ for p > 0.

X will be a non-singular irreducible real affine variety with structure sheaf \mathcal{O}_X .

Definition 2

A sheaf \mathcal{F} of \mathcal{O}_X -modules is called quasi-coherent if there exists a finite Zariski open covering $\{U_i\}_{i=1}^n$ of X such that for every U_i there is an exact sequence of sheaves

$$\mathcal{O}_X^{\oplus J_i}|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{\oplus I_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

 \mathcal{F} is called coherent if the sets I_i, J_i can be taken to be finite.

A B M A B M

By a multi-blowup we mean a finite composition of blowups along smooth centers. The basic tool used in these proofs is transformation to simple normal crossing.

By a multi-blowup we mean a finite composition of blowups along smooth centers. The basic tool used in these proofs is transformation to simple normal crossing.

Definition 3

We say that a regular function $g : X \to \mathbb{R}$ on a non-singular real algebraic variety of dimension d is a simple normal crossing if in a neighbourhood of each point $a \in X$ one has

$$g(x) = u(x)x^{\alpha} = u(x)x_1^{\alpha_1}x_2^{\alpha_2}\dots x_d^{\alpha_d}$$

where u(x) is a unit at $a, \alpha \in \mathbb{N}^d$ and $x = (x_1, x_2, \ldots, x_d)$ are local coordinates near a, i.e. $x_1, x_2, \ldots, x_d \in \mathcal{O}_{a,X}$ is a regular system of parameters of the local ring $\mathcal{O}_{a,X}$.

By a multi-blowup we mean a finite composition of blowups along smooth centers. The basic tool used in these proofs is transformation to simple normal crossing.

Definition 3

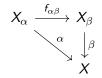
We say that a regular function $g : X \to \mathbb{R}$ on a non-singular real algebraic variety of dimension d is a simple normal crossing if in a neighbourhood of each point $a \in X$ one has

$$g(x) = u(x)x^{\alpha} = u(x)x_1^{\alpha_1}x_2^{\alpha_2}\dots x_d^{\alpha_d}$$

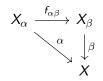
where u(x) is a unit at $a, \alpha \in \mathbb{N}^d$ and $x = (x_1, x_2, \ldots, x_d)$ are local coordinates near a, i.e. $x_1, x_2, \ldots, x_d \in \mathcal{O}_{a,X}$ is a regular system of parameters of the local ring $\mathcal{O}_{a,X}$.

Theorem 4

Let f_1, f_2, \ldots, f_k be regular functions on X. Then there exists a multi-blowup $\sigma : \widetilde{X} \to X$ such that $\sigma^* f_1, \sigma^* f_2, \ldots, \sigma^* f_k$ are simple normal crossings and they are linearly ordered by divisibility relation near each point $h \in \widetilde{X}$. Tomasz Kowalczyk (Jagiellonian UniversiBlown-up Čech cohomology and Cartan's tódź, January 10, 2019 3 / 20 Given two multi-blowups $\alpha : X_{\alpha} \to X, \ \beta : X_{\beta} \to X$ we say that $X_{\alpha} \succeq X_{\beta}$ if there is a (unique) regular map $f_{\alpha\beta}$ making the following diagram commute



Given two multi-blowups $\alpha : X_{\alpha} \to X, \ \beta : X_{\beta} \to X$ we say that $X_{\alpha} \succeq X_{\beta}$ if there is a (unique) regular map $f_{\alpha\beta}$ making the following diagram commute



Obviously, \succeq is a partial order on the set of all multi-blowups of X.

Given two multi-blowups $\alpha : X_{\alpha} \to X, \ \beta : X_{\beta} \to X$ we say that $X_{\alpha} \succeq X_{\beta}$ if there is a (unique) regular map $f_{\alpha\beta}$ making the following diagram commute

Obviously, \succeq is a partial order on the set of all multi-blowups of X.

Proposition 1

With the order given above, the set of multi-blowups of X is a directed set.

Let \mathcal{F} be a sheaf on X and $\mathcal{U} = \{U_i\}_{i=1}^n$ be a finite Zariski open covering of X. Put $U_{i_0...i_q} = U_{i_0} \cap U_{i_1} \cap \cdots \cap U_{i_q}$ and

$$C^q(\mathcal{U},\mathcal{F}) := \prod_{1 \leq i_0 \leq i_1 \leq \cdots \leq i_q \leq n} \mathcal{F}(U_{i_0 i_1 \dots i_q}).$$

 $C^q(\mathcal{U},\mathcal{F})$ is called the abelian group of q-cochains.

Let \mathcal{F} be a sheaf on X and $\mathcal{U} = \{U_i\}_{i=1}^n$ be a finite Zariski open covering of X. Put $U_{i_0...i_q} = U_{i_0} \cap U_{i_1} \cap \cdots \cap U_{i_q}$ and

$$C^q(\mathcal{U},\mathcal{F}) := \prod_{1 \leq i_0 \leq i_1 \leq \cdots \leq i_q \leq n} \mathcal{F}(U_{i_0 i_1 \dots i_q}).$$

 $C^q(\mathcal{U},\mathcal{F})$ is called the abelian group of q-cochains. We have a chain complex

$$\cdots \longrightarrow C^{q-1}(\mathcal{U},\mathcal{F}) \stackrel{d^{q-1}}{\longrightarrow} C^q(\mathcal{U},\mathcal{F}) \stackrel{d^q}{\longrightarrow} C^{q+1}(\mathcal{U},\mathcal{F}) \longrightarrow \ldots$$

where

$$(d^{q}f)_{i_{0}i_{1},...i_{q+1}} = \sum_{j=0}^{q+1} (-1)^{j} f_{i_{0}i_{1}...\widehat{i_{j}}...i_{q+1}} |_{U_{i_{0}i_{1}...i_{q+1}}}|_{U_{i_{0}i_{1}...i_{q+1}}}$$

for any $f = (f_{i_0...i_q}) \in C^q(\mathcal{U}, \mathcal{F}).$

Let \mathcal{F} be a sheaf on X and $\mathcal{U} = \{U_i\}_{i=1}^n$ be a finite Zariski open covering of X. Put $U_{i_0...i_q} = U_{i_0} \cap U_{i_1} \cap \cdots \cap U_{i_q}$ and

$$C^q(\mathcal{U},\mathcal{F}) := \prod_{1 \leq i_0 \leq i_1 \leq \cdots \leq i_q \leq n} \mathcal{F}(U_{i_0 i_1 \dots i_q}).$$

 $C^q(\mathcal{U},\mathcal{F})$ is called the abelian group of q-cochains. We have a chain complex

$$\cdots \longrightarrow C^{q-1}(\mathcal{U},\mathcal{F}) \xrightarrow{d^{q-1}} C^q(\mathcal{U},\mathcal{F}) \xrightarrow{d^q} C^{q+1}(\mathcal{U},\mathcal{F}) \longrightarrow \cdots$$

where

$$(d^{q}f)_{i_{0}i_{1},\ldots i_{q+1}} = \sum_{j=0}^{q+1} (-1)^{j} f_{i_{0}i_{1}\ldots \hat{i_{j}}\ldots i_{q+1}} |_{U_{i_{0}i_{1}\ldots i_{q+1}}}$$

for any $f = (f_{i_0...i_q}) \in C^q(\mathcal{U}, \mathcal{F})$. If $\alpha : X_\alpha \to X$ is a morphism of real affine varieties, we get the induced chain complex

$$\cdots \longrightarrow C^{q-1}(\mathcal{U}^{\alpha}, \alpha^* \mathcal{F}) \xrightarrow{d^{q-1}} C^q(\mathcal{U}^{\alpha}, \alpha^* \mathcal{F}) \xrightarrow{d^q} C^{q+1}(\mathcal{U}^{\alpha}, \alpha^* \mathcal{F}) \longrightarrow \cdots$$

and a canonical chain complex homomorphism

$$lpha^*: \mathcal{C}^{ullet}(\mathcal{U},\mathcal{F}) o \mathcal{C}^{ullet}(\mathcal{U}^lpha, lpha^*_*\mathcal{F});$$

Put

$$\widetilde{\mathcal{F}}(U) = \varinjlim_{\alpha} \alpha^* \mathcal{F}(U^{\alpha}),$$

for any Zariski open subset U of X; direct limit is taken over the directed set of multi-blowups of X. Obviously, $\widetilde{\mathcal{F}}(U)$ has a structure of $\mathcal{O}_X(U)$ -module.

Put

$$\widetilde{\mathcal{F}}(U) = \varinjlim_{\alpha} \alpha^* \mathcal{F}(U^{\alpha}),$$

for any Zariski open subset U of X; direct limit is taken over the directed set of multi-blowups of X. Obviously, $\widetilde{\mathcal{F}}(U)$ has a structure of $\mathcal{O}_X(U)$ -module. Let $\widetilde{C}^{\bullet}(\mathcal{U}, \mathcal{F})$ be the chain complex defined by the formula

$$\widetilde{\mathcal{C}}^{ullet}(\mathcal{U},\mathcal{F}) = \varinjlim_{lpha} \mathcal{C}^{ullet}(\mathcal{U}^{lpha},lpha^*\mathcal{F}).$$

Put

$$\widetilde{\mathcal{F}}(U) = \varinjlim_{\alpha} \alpha^* \mathcal{F}(U^{\alpha}),$$

for any Zariski open subset U of X; direct limit is taken over the directed set of multi-blowups of X. Obviously, $\widetilde{\mathcal{F}}(U)$ has a structure of $\mathcal{O}_X(U)$ -module. Let $\widetilde{C}^{\bullet}(\mathcal{U},\mathcal{F})$ be the chain complex defined by the formula

$$\widetilde{C}^{\bullet}(\mathcal{U},\mathcal{F}) = \lim_{\stackrel{\longrightarrow}{\alpha}} C^{\bullet}(U^{\alpha}, \alpha^*\mathcal{F}).$$

Definition 5

The *q*-th blown-up Čech cohomology group of \mathcal{F} with respect to \mathcal{U} $\widetilde{H}^{q}(\mathcal{U}, \mathcal{F})$ is the *q*-th cohomology group of the chain complex $\widetilde{C}^{\bullet}(\mathcal{U}, \mathcal{F})$. Assume we have a short exact sequence of sheaves of \mathcal{O}_X -modules

$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{H} \rightarrow 0.$$

Tomasz Kowalczyk (Jagiellonian UniversiBlown-up Čech cohomology and Cartan's Łódź, January 10, 2019 7 / 20

Assume we have a short exact sequence of sheaves of \mathcal{O}_X -modules

$$0
ightarrow \mathcal{F}
ightarrow \mathcal{G}
ightarrow \mathcal{H}
ightarrow 0.$$

What do we have to assume about $\mathcal{F}, \mathcal{G}, \mathcal{H}$ in order to obtain a short exact sequence of chain complexes

$$0 o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{F}) \stackrel{\phi}{ o} \widetilde{C}^{ullet}(\mathcal{U},\mathcal{G}) \stackrel{\psi}{ o} \widetilde{C}^{ullet}(\mathcal{U},\mathcal{H}) o 0?$$

Assume we have a short exact sequence of sheaves of \mathcal{O}_X -modules

$$0
ightarrow \mathcal{F}
ightarrow \mathcal{G}
ightarrow \mathcal{H}
ightarrow 0.$$

What do we have to assume about $\mathcal{F}, \mathcal{G}, \mathcal{H}$ in order to obtain a short exact sequence of chain complexes

$$0 o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{F}) \stackrel{\phi}{ o} \widetilde{C}^{ullet}(\mathcal{U},\mathcal{G}) \stackrel{\psi}{ o} \widetilde{C}^{ullet}(\mathcal{U},\mathcal{H}) o 0?$$

In general we have only

$$0 \to C^{\bullet}(\mathcal{U}, \mathcal{F}) \to C^{\bullet}(\mathcal{U}, \mathcal{G}) \to C^{\bullet}(\mathcal{U}, \mathcal{H})$$

and if $\alpha: X_{\alpha} \to X$ is a multi-blowup we have even less

$$C^{\bullet}(\mathcal{U}^{\alpha}, \alpha^{*}\mathcal{F}) \to C^{\bullet}(\mathcal{U}^{\alpha}, \alpha^{*}\mathcal{G}) \to C^{\bullet}(\mathcal{U}^{\alpha}, \alpha^{*}\mathcal{H}).$$

Lemma 6

Let \mathcal{F} be a quasi-coherent sheaf on X. For any $Q \in \mathcal{O}_X(X)$ and a section $s \in \mathcal{F}(X)$ such that $s|_U = 0$ with $U = X \setminus \{Q = 0\}$, there exist a multi-blowup $\sigma : \widetilde{X} \to X$ and a positive integer N such that $(Q^N)^{\sigma} \sigma^* s = 0$ in $\sigma^* \mathcal{F}(\widetilde{X})$.

Lemma 7

Let \mathcal{F} be a quasi-coherent sheaf on X with local presentations

$$\mathcal{O}_X^{\oplus J}|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{\oplus I_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0 \quad i = 1, 2, \dots, n$$

on a finite Zariski open covering $\{U_i\}_{i=1}^n$ of X. Consider a finite number of sections $s_j \in \mathcal{F}(V_j)$ on Zariski open sets

$$V_j = X \setminus \{Q_j = 0\}, \quad j = 1, 2, \ldots, m$$

where Q_j are regular functions on X. Assume that every V_j is contained in $U_{i(j)}$ for some i(j) = 1, 2, ..., n and that for each j there is a section $t_j \in \mathcal{O}_X^{I_{i(j)}}(V_j)$ such that $\psi_{i(j)}(t_j) = s_j$. Then there exists a positive integer N and a multi-blowup $\sigma : X_\sigma \to X$ such that every section $(Q_j^N)^\sigma \sigma^* s_j, \quad j = 1, 2, ..., m$, extends to a global section on X_σ .

Theorem 8

Let

$$\mathcal{G} \xrightarrow{\theta} \mathcal{H}
ightarrow 0$$

be an exact sequence of quasi-coherent sheaves on X. Then for any Zariski open $U \subset X$ and any section $u \in \mathcal{H}(U)$ there exists a multi-blowup $\alpha : X_{\alpha} \to X$ such that $\alpha^* u \in \operatorname{im} \theta^{\alpha}$.

★ 3 > 3

Theorem 8

Let

$$\mathcal{G} \xrightarrow{\theta} \mathcal{H}
ightarrow 0$$

be an exact sequence of quasi-coherent sheaves on X. Then for any Zariski open $U \subset X$ and any section $u \in \mathcal{H}(U)$ there exists a multi-blowup $\alpha : X_{\alpha} \to X$ such that $\alpha^* u \in \operatorname{im} \theta^{\alpha}$.

Corollary 1

Let

$$\mathcal{G} \xrightarrow{\theta} \mathcal{H}
ightarrow 0$$

be an exact sequence of quasi-coherent sheaves on X. Then, for any Zariski open subset $U \subset X$, the induced sequence of $\mathcal{O}_X(U)$ -modules

$$\widetilde{\mathcal{G}}(U)
ightarrow \widetilde{\mathcal{H}}(U)
ightarrow 0$$

is exact.

Let \mathcal{F} be a quasi-coherent sheaf on X.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Let \mathcal{F} be a quasi-coherent sheaf on X.

Definition 9

We say that \mathcal{H} is of homological dimension k at x, $\operatorname{hdim}_{x}\mathcal{H} = k$, if k is the smallest integer such that there exists a Zariski open neighbourhood U and sets of indices I_0, I_1, \ldots, I_k for which there is an exact sequence of sheaves:

$$0 \to \mathcal{O}_X^{\oplus l_k}|_U \to \mathcal{O}_X^{\oplus l_{k-1}}|_U \to \cdots \to \mathcal{O}_X^{\oplus l_0}|_U \to \mathcal{H}|_U \to 0.$$

We define the homological dimension of ${\mathcal H}$ as

$$\operatorname{hdim} \mathcal{H} = \sup_{x \in X} \operatorname{hdim}_{x} \mathcal{H}.$$

Let \mathcal{F} be a quasi-coherent sheaf on X.

Definition 9

We say that \mathcal{H} is of homological dimension k at x, $\operatorname{hdim}_{x}\mathcal{H} = k$, if k is the smallest integer such that there exists a Zariski open neighbourhood U and sets of indices I_0, I_1, \ldots, I_k for which there is an exact sequence of sheaves:

$$0 \to \mathcal{O}_X^{\oplus l_k}|_U \to \mathcal{O}_X^{\oplus l_{k-1}}|_U \to \cdots \to \mathcal{O}_X^{\oplus l_0}|_U \to \mathcal{H}|_U \to 0.$$

We define the homological dimension of $\ensuremath{\mathcal{H}}$ as

$$\operatorname{hdim} \mathcal{H} = \sup_{x \in X} \operatorname{hdim}_{x} \mathcal{H}.$$

Obviously, $\operatorname{hdim} \mathcal{H} = 0$ iff \mathcal{H} is a locally free sheaf. Consequently, $\operatorname{hdim} \mathcal{H} = 1$ means that \mathcal{H} is locally a quotient of free sheaves.

Let \mathcal{H} be a coherent sheaf on X and $x \in X$, then

 $\operatorname{pd} \mathcal{H}_x = \operatorname{hdim}_x \mathcal{H},$

here $\operatorname{pd} \mathcal{H}_x$ is a projective dimension of $\mathcal{O}_{x,X}$ -module.

B → B

Let \mathcal{H} be a coherent sheaf on X and $x \in X$, then

 $\operatorname{pd} \mathcal{H}_x = \operatorname{hdim}_x \mathcal{H},$

here $\operatorname{pd} \mathcal{H}_x$ is a projective dimension of $\mathcal{O}_{x,X}$ -module.

Proposition 3

Let R be an integral domain, and K its field of fractions. Consider an exact sequence of R-modules

$$0 \rightarrow F \rightarrow G$$

such that F is free and the projective dimension of G is ≤ 1 . Then for any ring S such that $R \subset S \subset K$ the induced sequence

$$0 \to F \otimes_R S \to G \otimes_R S.$$

is exact.

Let

$$0
ightarrow \mathcal{F}
ightarrow \mathcal{G}$$

be an exact sequence of quasi-coherent sheaves on X such that $\operatorname{hdim} \mathcal{F} = 0$ and $\operatorname{hdim} \mathcal{G} \leq 1$. Then for any multi-blowup $\sigma : X_{\sigma} \to X$ the induced sequence

$$0 \rightarrow \sigma^* \mathcal{F} \rightarrow \sigma^* \mathcal{G}$$

is exact.

3 🕨 🤅 3

Let

$$0
ightarrow \mathcal{F}
ightarrow \mathcal{G}$$

be an exact sequence of quasi-coherent sheaves on X such that $\operatorname{hdim} \mathcal{F} = 0$ and $\operatorname{hdim} \mathcal{G} \leq 1$. Then for any multi-blowup $\sigma : X_{\sigma} \to X$ the induced sequence

$$0 \rightarrow \sigma^* \mathcal{F} \rightarrow \sigma^* \mathcal{G}$$

is exact.

Lemma 10

Let $\alpha : X_{\alpha} \to X$ be a multi-blowup of X and \mathcal{H} a quasi-coherent sheaf on X. If \mathcal{H} is of homological dimension ≤ 1 , so is the pull-back $\alpha^* \mathcal{H}$.

Let \mathcal{U} be a finite Zariski open covering of X and

 $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$

be a short exact sequence of quasi-coherent sheaves on X such that $\operatorname{hdim} \mathcal{F} = 0$ and $\operatorname{hdim} \mathcal{G} \leq 1$.

Let \mathcal{U} be a finite Zariski open covering of X and

$$0
ightarrow \mathcal{F}
ightarrow \mathcal{G}
ightarrow \mathcal{H}
ightarrow 0$$

be a short exact sequence of quasi-coherent sheaves on X such that $\operatorname{hdim} \mathcal{F} = 0$ and $\operatorname{hdim} \mathcal{G} \leq 1$. Then there is an induced short exact sequence of chain complexes

$$0 o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{F}) \stackrel{\phi}{ o} \widetilde{C}^{ullet}(\mathcal{U},\mathcal{G}) \stackrel{\psi}{ o} \widetilde{C}^{ullet}(\mathcal{U},\mathcal{H}) o 0$$

which induces long exact sequence of blown-up Čech cohomology

$$\cdots \to \widetilde{H}^{p}(\mathcal{U},\mathcal{F}) \to \widetilde{H}^{p}(\mathcal{U},\mathcal{G}) \to \widetilde{H}^{p}(\mathcal{U},\mathcal{H}) \to \widetilde{H}^{p+1}(\mathcal{U},\mathcal{F}) \to \ldots$$

Let \mathcal{F} be a quasi-coherent locally free subsheaf of $\mathcal{O}_X^{\oplus I}$. For any finite Zariski open covering of X we have

 $\widetilde{H}^q(\mathcal{U},\mathcal{F})=0.$

B → B

Let \mathcal{F} be a quasi-coherent locally free subsheaf of $\mathcal{O}_X^{\oplus I}$. For any finite Zariski open covering of X we have

 $\widetilde{H}^q(\mathcal{U},\mathcal{F})=0.$

From this we immediately obtain Cartan's Theorem B

Theorem 11

Let \mathcal{F} be a sheaf of \mathcal{O}_X -modules and let \mathcal{U} be a finite Zariski open covering of X. Assume that one of the following conditions hold

- a) \mathcal{F} is a quasi-coherent locally free subsheaf of $\mathcal{O}_X^{\oplus l}$.
- b) ${\cal F}$ is a quasi-coherent sheaf with global presentation and ${\rm hdim}\,{\cal F}\le 1.$

c)
$$\mathcal{F}$$
 is a coherent sheaf with $\operatorname{hdim} \mathcal{F} \leq 1$.

Then $H^q(\mathcal{U}, \mathcal{F}) = 0$, for $q \ge 1$.

Let $\mathcal{U} = \{U_i\}_{i=1}^n$ be a finite Zariski open covering of X. Assume that for each *i* we have a rational function f_i on U_i such that $f_i - f_j$ is regular on $U_i \cap U_j$ for each two distinct indices i, j = 1, 2, ..., n. Then we call $\{(U_i, f_i)\}_{i=1}^n$ data of the first Cousin problem or an additive Cousin distribution on X.

Let $\mathcal{U} = \{U_i\}_{i=1}^n$ be a finite Zariski open covering of X. Assume that for each *i* we have a rational function f_i on U_i such that $f_i - f_j$ is regular on $U_i \cap U_j$ for each two distinct indices i, j = 1, 2, ..., n. Then we call $\{(U_i, f_i)\}_{i=1}^n$ data of the first Cousin problem or an additive Cousin distribution on X.

The first Cousin problem consists in characterizing those data $\{(U_i, f_i)\}_{i=1}^n$ which have the principal parts of a rational function f on X, i.e. those for which $f - f_i$ are regular on U_i , i = 1, 2, ..., n. We then say that the data $\{(U_i, f_i)\}_{i=1}^n$ is solvable. If every first Cousin data on X is solvable, we say that the first Cousin problem is universally solvable on X

Consider the short exact sequence

$$0 o \mathcal{O}_X o \mathcal{K}_X \stackrel{\varphi}{ o} \mathcal{H}_X := \mathcal{K}_X / \mathcal{O}_X o 0$$

of quasi-coherent sheaves on X. The data $\{(U_i, f_i)\}_{i=1}^n$ of the first Cousin problem can be related to a unique global section $s \in \mathcal{H}_X(X)$; every such section is called a principal part distribution on X. Then we also say that $\{(U_i, f_i)\}_{i=1}^n$ is an s-representing distribution. In particular, for every rational function $f \in \mathcal{K}_X(X)$ we have its principal part distribution $\varphi(f)$ on X. Consider the short exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{K}_X \xrightarrow{\varphi} \mathcal{H}_X := \mathcal{K}_X / \mathcal{O}_X \to 0$$

of quasi-coherent sheaves on X. The data $\{(U_i, f_i)\}_{i=1}^n$ of the first Cousin problem can be related to a unique global section $s \in \mathcal{H}_X(X)$; every such section is called a principal part distribution on X. Then we also say that $\{(U_i, f_i)\}_{i=1}^n$ is an s-representing distribution. In particular, for every rational function $f \in \mathcal{K}_X(X)$ we have its principal part distribution $\varphi(f)$ on X.

Clearly, every s-representing distribution $\{(U_i, f_i)\}_{i=1}^n$ determines a 1-cocycle $(g)_{ij}, g_{ij} = f_i - f_j$ which induces a cohomology class $\zeta(s)$ in $H^1(\mathcal{U}, \mathcal{O}_X)$. The solvability of a given Cousin data can be rephrased in terms of vanishing $\zeta(s)$ in $H^1(\mathcal{U}, \mathcal{O}_X)$.

Lemma 12

An s-representing distribution $\{(U_i, f_i)\}_{i=1}^n$ is solvable iff $\zeta(s) = 0 \in H^1(\mathcal{U}, \mathcal{O}_X).$

・ 何 ト ・ ヨ ト ・ ヨ ト

3

Lemma 13

For any multi-blowup $\alpha: X_{\alpha} \rightarrow X$ we have a short exact sequence

$$0 o \mathcal{O}_{X_{\alpha}} o \mathcal{K}_{X_{\alpha}} o \mathcal{H}_{X_{\alpha}} o 0$$

of quasi-coherent sheaves on X_{α} .

3 🕨 🤅 3

Lemma 13

For any multi-blowup $\alpha: X_{\alpha} \to X$ we have a short exact sequence

$$0 o \mathcal{O}_{X_{lpha}} o \mathcal{K}_{X_{lpha}} o \mathcal{H}_{X_{lpha}} o 0$$

of quasi-coherent sheaves on X_{α} .

Theorem 14

Let $\{(U_i, f_i)\}_{i=1}^n$ be an s-representing distribution. Then there exists a multi-blowup $\alpha : X_{\alpha} \to X$ such that pull-back $\{(U_i^{\alpha}, f_i^{\alpha})\}_{i=1}^n$ is solvable i.e. there exists a rational function f on X_{α} such that $f - f_i^{\alpha} \in \mathcal{O}_{X_{\alpha}}(U_i^{\alpha})$.

Proof of Theorem 14

The above lemma yields the following short exact sequence of chain complexes

$$0 o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{O}_X) o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{K}_X) o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{H}_X) o 0$$

∃ ⊳

Proof of Theorem 14

The above lemma yields the following short exact sequence of chain complexes

$$0 o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{O}_X) o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{K}_X) o \widetilde{C}^{ullet}(\mathcal{U},\mathcal{H}_X) o 0$$

which induces a long exact sequence in blown-up Čech cohomology

$$\begin{split} 0 &\to \widetilde{H}^0(\mathcal{U}, \mathcal{O}_X) \to \widetilde{H}^0(\mathcal{U}, \mathcal{K}_X) \to \widetilde{H}^0(\mathcal{U}, \mathcal{H}_X) \to \widetilde{H}^1(\mathcal{U}, \mathcal{O}_X) \\ &\to \widetilde{H}^1(\mathcal{U}, \mathcal{K}_X) \to \widetilde{H}^1(\mathcal{U}, \mathcal{H}_X) \to \dots \end{split}$$

By Proposition 6, $\widetilde{H}^1(\mathcal{U},\mathcal{O}_X)=0.$

Proof of Theorem 14

Since

$$\widetilde{H}^1(\mathcal{U},\mathcal{O}_X) = \lim_{\stackrel{\longrightarrow}{\alpha}} H^1(\mathcal{U}^{\alpha},\mathcal{O}_{X_{\alpha}}),$$

for any class $\omega \in H^1(\mathcal{U}, \mathcal{O}_X)$ there exists a multi-blowup $\alpha : X_\alpha \to X$ such that $\alpha^* \omega = 0$ in $H^1(\mathcal{U}^\alpha \mathcal{O}_{X_\alpha})$. To finish the proof it is enough to take $\omega = \zeta(s)$.