A version of Cartan's Theorem A for coherent sheaves on real affine varieties

Tomasz Kowalczyk

Jagiellonian University in Kraków

Łódź, January 12, 2018

Theorem 1 (Serre)

Let X be an affine variety over an algebraically closed field and \mathcal{F} be a coherent sheaf on X. Then \mathcal{F} is spanned by its global sections.

Theorem 1 (Serre)

Let X be an affine variety over an algebraically closed field and \mathcal{F} be a coherent sheaf on X. Then \mathcal{F} is spanned by its global sections.

X will be a non-singular real affine variety with structure sheaf \mathcal{O}_X .

Definition 2

A sheaf \mathcal{F} of \mathcal{O}_X -Modules is called coherent if there exists a finite Zariski open covering $\{U_i\}_{i=1}^n$ of X such that for every U_i there is an exact sequence of sheaves

$$\mathcal{O}_X^{p_i}|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

(日)

3

complex analytic geometry,

э

- complex analytic geometry,
- algebraic geometry over algebraically closed field (Serre)

- complex analytic geometry,
- 2 algebraic geometry over algebraically closed field (Serre)
- Scheme theory (Grothendieck, Hartshorne)

- complex analytic geometry,
- 2 algebraic geometry over algebraically closed field (Serre)
- Scheme theory (Grothendieck, Hartshorne)
- regulous geometry (Fichou, Huisman, Mangolte, Monnier)

- complex analytic geometry,
- algebraic geometry over algebraically closed field (Serre)
- Scheme theory (Grothendieck, Hartshorne)
- regulous geometry (Fichou, Huisman, Mangolte, Monnier)
- I regulous geometry over Henselian valued fields (Nowak)

Example 1

Let $P = X^2(X-1)^2 + Y^2 \in \mathbb{R}[X, Y]$. The polynomial P is irreducible and has only two zeros $c_1 = (0,0)$ and $c_2 = (1,0)$ in \mathbb{R}^2 . Put $U_i = \mathbb{R}^2 \setminus \{c_i\}$. The transition function

$$g_{1,2}: U_1 \cap U_2
ightarrow \mathit{GL}(1,\mathbb{R}) = \mathbb{R}^*$$

 $(x,y)\mapsto P(x,y)$

defines a vector bundle of rank 1 over \mathbb{R}^2 .

Example 1

Let $P = X^2(X-1)^2 + Y^2 \in \mathbb{R}[X, Y]$. The polynomial P is irreducible and has only two zeros $c_1 = (0,0)$ and $c_2 = (1,0)$ in \mathbb{R}^2 . Put $U_i = \mathbb{R}^2 \setminus \{c_i\}$. The transition function

$$g_{1,2}: U_1 \cap U_2
ightarrow GL(1,\mathbb{R}) = \mathbb{R}^*$$
 $(x,y) \mapsto P(x,y)$

defines a vector bundle of rank 1 over \mathbb{R}^2 . Global sections can be described as a pair (s_1, s_2) where $s_i : U_i \to \mathbb{R}$ are regular functions and $s_1 = g_{1,2}s_2$. Set $s_i = \frac{f_i}{h_i}$ where f_i, h_i are relatively prime polynomials. Then $f_1h_2 = Pf_2h_1$. Since P does not divide h_2 we obtain that $f_1 = \lambda Pf_2$ and $h_2 = \lambda^{-1}h_1$, where $\lambda \in \mathbb{R}^*$. This shows that every algebraic global section of this bundle vanishes at c_2 . By a multi-blowup we mean a finite composition of blowups along smooth centers. The basic tool used in these proofs is transformation to simple normal crossing.

3

By a multi-blowup we mean a finite composition of blowups along smooth centers. The basic tool used in these proofs is transformation to simple normal crossing.

Definition 3

We say that a regular function $g : X \to \mathbb{R}$ on a non-singular real algebraic variety of dimension d is a simple normal crossing if in a neighbourhood of each point $a \in X$ one has

$$g(x) = u(x)x^{\alpha} = u(x)x_1^{\alpha_1}x_2^{\alpha_2}\dots x_d^{\alpha_d}$$

where u(x) is a unit at $a, \alpha \in \mathbb{N}^d$ and $x = (x_1, x_2, \ldots, x_d)$ are local coordinates near a, i.e. $x_1, x_2, \ldots, x_d \in \mathcal{O}_{a,X}$ is a regular system of parameters of the local ring $\mathcal{O}_{a,X}$.

By a multi-blowup we mean a finite composition of blowups along smooth centers. The basic tool used in these proofs is transformation to simple normal crossing.

Definition 3

We say that a regular function $g : X \to \mathbb{R}$ on a non-singular real algebraic variety of dimension d is a simple normal crossing if in a neighbourhood of each point $a \in X$ one has

$$g(x) = u(x)x^{\alpha} = u(x)x_1^{\alpha_1}x_2^{\alpha_2}\dots x_d^{\alpha_d}$$

where u(x) is a unit at $a, \alpha \in \mathbb{N}^d$ and $x = (x_1, x_2, \ldots, x_d)$ are local coordinates near a, i.e. $x_1, x_2, \ldots, x_d \in \mathcal{O}_{a,X}$ is a regular system of parameters of the local ring $\mathcal{O}_{a,X}$.

Theorem 4

Let f_1, f_2, \ldots, f_k be regular functions on X. Then there exists a multi-blowup $\sigma : \widetilde{X} \to X$ such that $\sigma^* f_1, \sigma^* f_2, \ldots, \sigma^* f_k$ are simple normal crossings.

Let X be a non-singular real affine variety and $U = X \setminus \{Q = 0\}$ a Zariski open subset of X. Every regular function f on U can be written in the form $f = \frac{g}{P}$ where g, P are global regular functions on X and $V(P) \subset V(Q)$.

Let X be a non-singular real affine variety and $U = X \setminus \{Q = 0\}$ a Zariski open subset of X. Every regular function f on U can be written in the form $f = \frac{g}{P}$ where g, P are global regular functions on X and $V(P) \subset V(Q)$.

Lemma 6

Let X be a non-singular real affine variety, Q a regular function on X and $U := X \setminus \{Q = 0\}$. Then for any $f \in \mathcal{O}_X(U)$ there exists a multi-blowup $\sigma : \widetilde{X} \to X$ and a positive integer N such that $(Q^N f)^{\sigma}$ can be extended to a global regular function, i.e. $(Q^N f)^{\sigma} \in \mathcal{O}_{\widetilde{X}}(\widetilde{X})$.

If the function f is of the form $f = \frac{g}{P}$ as a consequence of proof we get that

$$(Q^N)^\sigma \in P^\sigma \mathcal{O}_{\widetilde{X}}(\widetilde{X})$$

We will now prove a crucial lemma

< 回 > < 三 > < 三 >

3

We will now prove a crucial lemma

Lemma 7

Let X be a non-singular real affine variety, \mathcal{F} a coherent sheaf on X. For any $Q \in \mathcal{O}_X(X)$ and a section $s \in \mathcal{F}(X)$ such that $s|_U = 0$ with $U = X \setminus \{Q = 0\}$, there exists a multi-blowup $\sigma : \widetilde{X} \to X$ and a positive integer N such that $(Q^N)^{\sigma} \sigma^* s = 0$ in $\sigma^* \mathcal{F}(\widetilde{X})$.

By quasi-compactness, there is a finite Zariski open covering $\{U_i\}_{i=1}^n$ of X such that for each *i* we have:

3

By quasi-compactness, there is a finite Zariski open covering $\{U_i\}_{i=1}^n$ of X such that for each *i* we have:

1) a presentation

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

3

By quasi-compactness, there is a finite Zariski open covering $\{U_i\}_{i=1}^n$ of X such that for each *i* we have:

1) a presentation

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

2) $s|_{U_i} = \psi_i(t_i)$ for some $t_i \in \mathcal{O}_X^{q_i}(U_i)$.

- 3

By quasi-compactness, there is a finite Zariski open covering $\{U_i\}_{i=1}^n$ of X such that for each *i* we have:

1) a presentation

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

2) $s|_{U_i} = \psi_i(t_i)$ for some $t_i \in \mathcal{O}_X^{q_i}(U_i)$. By the assumption, $t_{i_X} \in \phi_i(\mathcal{O}_{x,X}^p)$ for each $x \in U_i \cap U$, and thus

$$t_{ix} = \sum_{j=1}^{p} f_{ijx} \phi_i(e_j)_x,$$

where $e_j = (0, 0, \dots, 0, \frac{1}{j}, 0, \dots, 0) \in \mathcal{O}_X^p(X)$ and $f_{ijx} \in \mathcal{O}_{x,X}$.

Define the ideal

 $I_i = \{P_i \in \mathcal{O}_X(X) : P_i t_i \in \phi_i(\mathcal{O}_X^p)(U_i)\} \quad i = 1, 2, \dots, n.$ Claim: $V(I_i) \cap U_i \subset V(Q) \cap U_i.$

Define the ideal

 $I_i = \{P_i \in \mathcal{O}_X(X) : P_i t_i \in \phi_i(\mathcal{O}_X^p)(U_i)\} \quad i = 1, 2, \dots, n.$

Claim: $V(I_i) \cap U_i \subset V(Q) \cap U_i$.

Proof.

If $x \in U_i \setminus V(Q)$, then

$$f_{ijx} = rac{g_{ijx}}{h_{ijx}}$$
 where $g_{ijx}, h_{ijx} \in \mathcal{O}_X(X), h_{ijx}(x) \neq 0.$
Define $P_i := \prod_{j=1}^p h_{ijx}$. Then

$$P_i t_i \in \sum_{j=1}^p \mathcal{O}_X(X) \phi_i(e_j|_{U_i}),$$

and thus $P_i \in I_i$. Since $P_i(x) \neq 0$ we get, $x \notin V(I_i)$.

Let $P_{i1}, P_{i2}, \ldots, P_{ir_i}$ be generators of I_i . Taking $P_i := P_{i1}^2 + \cdots + P_{ir_i}^2 \in I_i$, we get $V(P_i) \subset V(Q)$.

医尿道尿 语

Let $P_{i1}, P_{i2}, \ldots, P_{ir_i}$ be generators of I_i . Taking $P_i := P_{i1}^2 + \cdots + P_{ir_i}^2 \in I_i$, we get $V(P_i) \subset V(Q)$. Consider the case i = 1.

∃ ⇒

3

Let $P_{i1}, P_{i2}, \ldots, P_{ir_i}$ be generators of I_i . Taking $P_i := P_{i1}^2 + \cdots + P_{ir_i}^2 \in I_i$, we get $V(P_i) \subset V(Q)$.

Consider the case i = 1. By the reasoning as in the proof of Lemma 6, there exist a multi-blowup $\sigma_1 : X_1 \to X$ and a positive integer N_1 such that

 $(Q^{N_1})^{\sigma_1} \in P_1^{\sigma_1} \mathcal{O}_{X_1}(X_1).$

Let $P_{i1}, P_{i2}, \ldots, P_{ir_i}$ be generators of I_i . Taking $P_i := P_{i1}^2 + \cdots + P_{ir_i}^2 \in I_i$, we get $V(P_i) \subset V(Q)$. Consider the case i = 1. By the reasoning as in the proof of Lemma 6,

there exist a multi-blowup $\sigma_1: X_1 \to X$ and a positive integer N_1 such that

$$(Q^{N_1})^{\sigma_1} \in P_1^{\sigma_1} \mathcal{O}_{X_1}(X_1).$$

Hence

$$(Q^{N_1})^{\sigma_1} \sigma_1^* t_1 \in \phi_1^{\sigma_1}(\mathcal{O}_{X_1}^p)(U_1^{\sigma_1})$$

Let $P_{i1}, P_{i2}, \ldots, P_{ir_i}$ be generators of I_i . Taking $P_i := P_{i1}^2 + \cdots + P_{ir_i}^2 \in I_i$, we get $V(P_i) \subset V(Q)$. Consider the case i = 1. By the reasoning as in the proof of Lemma 6, there exist a multi-blowup $\sigma_1 : X_1 \to X$ and a positive integer N_1 such that

$$(Q^{N_1})^{\sigma_1} \in P_1^{\sigma_1}\mathcal{O}_{X_1}(X_1).$$

Hence

$$(Q^{N_1})^{\sigma_1} \sigma_1^* t_1 \in \phi_1^{\sigma_1}(\mathcal{O}_{X_1}^p)(U_1^{\sigma_1})$$

and thus

$$(Q^{N_1})^{\sigma_1} \sigma_1^* s|_{U_1^{\sigma_1}} = 0.$$

Note that if $\sigma_1 : X_1 \to X$ is a blowup and if a covering $\{U_i\}_{i=1}^n$ of X satisfies conditions 1) and 2), then so does the covering $\{U_i^{\sigma_1}\}_{i=1}^n$.

Note that if $\sigma_1 : X_1 \to X$ is a blowup and if a covering $\{U_i\}_{i=1}^n$ of X satisfies conditions 1) and 2), then so does the covering $\{U_i^{\sigma_1}\}_{i=1}^n$. Now we can repeat the reasoning for $U_2^{\sigma_1}$ to obtain a positive integer $N_2 \ge N_1$ and a multi-blowup $\sigma_2 : X_2 \to X_1$ such that

$$(Q^{N_2})^{\sigma_1 \circ \sigma_2} (\sigma_1 \circ \sigma_2)^* s|_{(U_1 \cup U_2)^{\sigma_1 \circ \sigma_2}} = 0$$

and so on.

Note that if $\sigma_1 : X_1 \to X$ is a blowup and if a covering $\{U_i\}_{i=1}^n$ of X satisfies conditions 1) and 2), then so does the covering $\{U_i^{\sigma_1}\}_{i=1}^n$. Now we can repeat the reasoning for $U_2^{\sigma_1}$ to obtain a positive integer $N_2 \ge N_1$ and a multi-blowup $\sigma_2 : X_2 \to X_1$ such that

$$(Q^{N_2})^{\sigma_1\circ\sigma_2}(\sigma_1\circ\sigma_2)^*s|_{(U_1\cup U_2)^{\sigma_1\circ\sigma_2}}=0$$

and so on. We continue this process and obtain a positive integer $N := N_n \ge N_{n-1} \ge \cdots \ge N_1$ and a multi-blowup $\sigma := \sigma_1 \circ \cdots \circ \sigma_n : \widetilde{X} \to X, \ \widetilde{X} := X_n$, such that $(Q^N)^{\sigma} \sigma^* s$ vanishes on $\widetilde{X} = (U_1 \cup U_2 \cup \cdots \cup U_n)^{\sigma}$. This finishes the proof.

Let $f : X \to Y$ be a morphism of real algebraic varieties.

Lemma 8

If \mathcal{G} is of finite type or coherent sheaf of \mathcal{O}_Y -Modules generated by sections $s_1, s_2, \ldots, s_k \in \mathcal{G}(Y)$, then the pull-back $f^*\mathcal{G}$ is generated by the pull-back $f^*s_1, f^*s_2, \ldots, f^*s_k \in (f^*\mathcal{G})(X)$.

Let ${\mathcal F}$ be a coherent sheaf on a non-singular real affine variety with local presentations

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} o 0 \quad i = 1, 2, \dots, n$$

on a finite Zariski open covering $\{U_1, U_2, \dots, U_n\}$. Consider a finite family of Zariski open sets

$$V_j = X \setminus \{Q_j = 0\}, \quad j = 1, 2, \dots, m$$

where Q_j are regular functions on X, and sections $s_j \in \mathcal{F}(V_j)$. Assume that every V_j is contained in $U_{i(j)}$ for some i(j) = 1, 2, ..., n and that for each s_j there is a section $t_j \in \mathcal{O}_X^{q_{i(j)}}(V_j)$ such that $\psi_{i(j)}(V_j)(t_j) = s_j$. Then there exists a positive integer N and a multi-blowup $\sigma : \widetilde{X} \to X$ such that every section $(Q_i^N)^{\sigma} \sigma^* s_j \quad j = 1, 2, ..., m$ extends to a global section on \widetilde{X} .

A B M A B M

- 3

Since taking pull-back under a multi-blowup does not affect the assumptions, it suffices to consider only one j = 1, 2, ..., m.

Since taking pull-back under a multi-blowup does not affect the assumptions, it suffices to consider only one j = 1, 2, ..., m. So fix a j and let $t_{ji} = t_j | u_i \cap v_j = (t_{ji1}, t_{ji2}, ..., t_{jiq_i})$ where

$$t_{jil}=rac{t_{jil_1}}{t_{jil_2}}, \quad t_{jil_1}, t_{jil_2}\in \mathcal{O}_X(X)$$

and

$$V(t_{jil2}) \cap U_i \subset V(Q_j) \cap U_i.$$

Since taking pull-back under a multi-blowup does not affect the assumptions, it suffices to consider only one j = 1, 2, ..., m. So fix a j and let $t_{ji} = t_j | u_i \cap v_j = (t_{ji1}, t_{ji2}, ..., t_{jiq_i})$ where

$$t_{jil} = rac{t_{jil_1}}{t_{jil_2}}, \quad t_{jil_1}, t_{jil_2} \in \mathcal{O}_X(X)$$

and

$$V(t_{jil2}) \cap U_i \subset V(Q_j) \cap U_i.$$

Using Lemma 6 we can find a positive integer N_1 and a multi-blowup $\tau_1: X_1 \to X$ such that

$$(t_{jil}(Q_j)^{N_1})^{ au_1} \in \mathcal{O}_{X_1}(U_i^{ au_1}) \;\; ext{for all }\; j,i,l.$$

Now define $\widetilde{s}_{ji} := \psi_i^{\tau_1}((t_{jil}(Q_j)^{N_1})^{\tau_1}).$

Then for any two distinct indices i_0, i_1 we have

$$(\widetilde{s_{ji_0}}-\widetilde{s_{ji_1}})|_{U_{i_0}^{\tau_1}\cap U_{i_1}^{\tau_1}}\in (\tau_1^*\mathcal{F})(U_{i_0}^{\tau_1}\cap U_{i_1}^{\tau_1})$$

and

$$(\widetilde{s_{ji_0}}-\widetilde{s_{ji_1}})|_{U_{i_0}^{\tau_1}\cap U_{i_1}^{\tau_1}\cap V_j^{\tau_1}}=0.$$

<日

<</p>

3

Then for any two distinct indices i_0, i_1 we have

$$(\widetilde{s_{ji_0}} - \widetilde{s_{ji_1}})|_{U_{i_0}^{\tau_1} \cap U_{i_1}^{\tau_1}} \in (\tau_1^* \mathcal{F})(U_{i_0}^{\tau_1} \cap U_{i_1}^{\tau_1})$$

and

$$(\widetilde{s_{ji_0}}-\widetilde{s_{ji_1}})|_{U_{i_0}^{\tau_1}\cap U_{i_1}^{\tau_1}\cap V_j^{\tau_1}}=0.$$

By Lemma 7 we can find a multi-blowup $\tau_2: \widetilde{X} \to X_1$ and a positive integer N_2 such that

$$(\tau_2^*\widetilde{s_{ji_0}}(Q_j^{N_1+N_2})^{\tau_1\circ\tau_2}-\tau_2^*\widetilde{s_{ji_1}}(Q_j^{N_1+N_2})^{\tau_1\circ\tau_2})|_{U_{i_0}^{\tau_1\circ\tau_2}\cap U_{i_1}^{\tau_1\circ\tau_2}}=0.$$

Then for any two distinct indices i_0, i_1 we have

$$(\widetilde{s_{ji_0}}-\widetilde{s_{ji_1}})|_{U_{i_0}^{\tau_1}\cap U_{i_1}^{\tau_1}}\in (\tau_1^*\mathcal{F})(U_{i_0}^{\tau_1}\cap U_{i_1}^{\tau_1})$$

and

$$(\widetilde{s_{ji_0}}-\widetilde{s_{ji_1}})|_{U_{i_0}^{\tau_1}\cap U_{i_1}^{\tau_1}\cap V_j^{\tau_1}}=0.$$

By Lemma 7 we can find a multi-blowup $au_2:\widetilde{X}\to X_1$ and a positive integer N_2 such that

$$(au_2^*\widetilde{s_{ji_0}}(Q_j^{N_1+N_2})^{ au_1\circ au_2}- au_2^*\widetilde{s_{ji_1}}(Q_j^{N_1+N_2})^{ au_1\circ au_2})|_{U_{i_0}^{ au_1\circ au_2}\cap U_{i_1}^{ au_1\circ au_2}}=0.$$

Considering all distinct pairs of indices, we can assume that the differences as above vanish for all those pairs. Therefore the sections

$$(au_{2}^{*}\widetilde{s_{ji}}(Q_{j}^{N_{1}+N_{2}})^{ au_{1}\circ au_{2}})|_{U_{i}^{ au_{1}\circ au_{2}}}, i = 1, 2, \dots, n,$$

glue together to a global section on \widetilde{X} . Thus $\sigma := \tau_1 \circ \tau_2 : \widetilde{X} \to X$ is the multi-blowup we are looking for.

Łódź, January 12, 2018

15 / 19

Let \mathcal{F} be a sheaf of \mathcal{O}_X -Modules of finite type and let $s_1, s_2, \ldots, s_k \in \mathcal{F}(U)$ be sections of \mathcal{F} on a neighbourhood U of a point $a \in X$. If $s_{1a}, s_{2a}, \ldots, s_{ka}$ generate \mathcal{F}_a , then $s_{1x}, s_{2x}, \ldots, s_{kx}$ generate \mathcal{F}_x for all x sufficiently close to a.

3 K K 3 K 3

Let \mathcal{F} be a sheaf of \mathcal{O}_X -Modules of finite type and let $s_1, s_2, \ldots, s_k \in \mathcal{F}(U)$ be sections of \mathcal{F} on a neighbourhood U of a point $a \in X$. If $s_{1a}, s_{2a}, \ldots, s_{ka}$ generate \mathcal{F}_a , then $s_{1x}, s_{2x}, \ldots, s_{kx}$ generate \mathcal{F}_x for all x sufficiently close to a.

Assume that, under the above assumptions, $U := X \setminus \{Q = 0\}$ with some $Q \in \mathcal{O}_X(X)$. Then the sections $Q^n s_1, Q^n s_2, \ldots, Q^n s_k$ generate every stalk sufficiently close to *a* because the function *Q* is invertible in $\mathcal{O}_{a,X}$ for every $a \in U$. Now we are ready to prove the main theorem.

Let \mathcal{F} be a sheaf of \mathcal{O}_X -Modules of finite type and let $s_1, s_2, \ldots, s_k \in \mathcal{F}(U)$ be sections of \mathcal{F} on a neighbourhood U of a point $a \in X$. If $s_{1a}, s_{2a}, \ldots, s_{ka}$ generate \mathcal{F}_a , then $s_{1x}, s_{2x}, \ldots, s_{kx}$ generate \mathcal{F}_x for all x sufficiently close to a.

Assume that, under the above assumptions, $U := X \setminus \{Q = 0\}$ with some $Q \in \mathcal{O}_X(X)$. Then the sections $Q^n s_1, Q^n s_2, \ldots, Q^n s_k$ generate every stalk sufficiently close to *a* because the function *Q* is invertible in $\mathcal{O}_{a,X}$ for every $a \in U$. Now we are ready to prove the main theorem.

Theorem 11

Let \mathcal{F} be a coherent sheaf on a non-singular real affine variety X. Then there exist a multi-blowup $\sigma : \widetilde{X} \to X$ and finitely many global sections s_1, s_2, \ldots, s_k on \widetilde{X} which generate every stalk $(\sigma^* \mathcal{F})_y, y \in \widetilde{X}$.

Consider a finite Zariski open covering $\{U_1, U_2, \ldots, U_n\}$ of X with local presentation of the sheaf \mathcal{F}

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

3 N K 3 N

3

Consider a finite Zariski open covering $\{U_1, U_2, \ldots, U_n\}$ of X with local presentation of the sheaf \mathcal{F}

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

By Lemma 11, for any point $a \in X$ there are finitely many sections

$$s_{a1}, s_{a2}, \ldots, s_{am_a} \in \mathcal{F}(V_a), \ \ m_a \in \mathbb{N},$$

on a Zariski open neighbourhood V_a of a, contained in U_i for some i = 1, 2, ..., n, which generate \mathcal{F} over V_a .

Consider a finite Zariski open covering $\{U_1, U_2, \ldots, U_n\}$ of X with local presentation of the sheaf \mathcal{F}

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

By Lemma 11, for any point $a \in X$ there are finitely many sections

$$s_{a1}, s_{a2}, \ldots, s_{am_a} \in \mathcal{F}(V_a), \ \ m_a \in \mathbb{N},$$

on a Zariski open neighbourhood V_a of a, contained in U_i for some i = 1, 2, ..., n, which generate \mathcal{F} over V_a . After shrinking V_a , we can also assume that $s_{ak} = \psi_i(t_{ak})$ for some $t_{ak} \in \mathcal{O}_X^{q_i}(V_a), \ k = 1, 2, ..., m_a$.

Consider a finite Zariski open covering $\{U_1, U_2, \ldots, U_n\}$ of X with local presentation of the sheaf \mathcal{F}

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

By Lemma 11, for any point $a \in X$ there are finitely many sections

$$s_{a1}, s_{a2}, \ldots, s_{am_a} \in \mathcal{F}(V_a), \ \ m_a \in \mathbb{N},$$

on a Zariski open neighbourhood V_a of a, contained in U_i for some i = 1, 2, ..., n, which generate \mathcal{F} over V_a . After shrinking V_a , we can also assume that $s_{ak} = \psi_i(t_{ak})$ for some $t_{ak} \in \mathcal{O}_X^{q_i}(V_a)$, $k = 1, 2, ..., m_a$. By quasi-compactness, we can find a finite covering $V_j := V_{a_j}, j = 1, 2, ..., m$ of X. Clearly, every V_j is contained in $U_{i(j)}$ for some i(j) = 1, 2, ..., n.

Consider a finite Zariski open covering $\{U_1, U_2, \ldots, U_n\}$ of X with local presentation of the sheaf \mathcal{F}

$$\mathcal{O}_X^p|_{U_i} \xrightarrow{\phi_i} \mathcal{O}_X^{q_i}|_{U_i} \xrightarrow{\psi_i} \mathcal{F}|_{U_i} \to 0.$$

By Lemma 11, for any point $a \in X$ there are finitely many sections

$$s_{a1}, s_{a2}, \ldots, s_{am_a} \in \mathcal{F}(V_a), \ \ m_a \in \mathbb{N},$$

on a Zariski open neighbourhood V_a of a, contained in U_i for some i = 1, 2, ..., n, which generate \mathcal{F} over V_a . After shrinking V_a , we can also assume that $s_{ak} = \psi_i(t_{ak})$ for some $t_{ak} \in \mathcal{O}_X^{q_i}(V_a), \ k = 1, 2, ..., m_a$. By quasi-compactness, we can find a finite covering $V_j := V_{aj}, \ j = 1, 2, ..., m$ of X. Clearly, every V_j is contained in $U_{i(j)}$ for some i(j) = 1, 2, ..., n. Put

$$s_{jk} = s_{a_jk}$$
 and $t_{jk} = t_{a_jk}$

for $j = 1, 2, \ldots, m$, $k = 1, 2, \ldots, m_j = m_{a_j}$.

Then $s_{jk} = \psi_{i(j)}(t_{jk})$ and the sections s_{jk} , $k = 1, 2, ..., m_j$ generate \mathcal{F} over V_j .

▶ ★ 唐 ▶ ★ 唐 ▶ → 唐

Then $s_{jk} = \psi_{i(j)}(t_{jk})$ and the sections s_{jk} , $k = 1, 2, ..., m_j$ generate \mathcal{F} over V_j . The sets $X \setminus V_j$ are Zariski closed and thus are of the form

$$X \setminus V_j = \{Q_j = 0\}, \quad j = 1, 2, \dots, m$$

for some regular functions Q_j on X.

Then $s_{jk} = \psi_{i(j)}(t_{jk})$ and the sections s_{jk} , $k = 1, 2, ..., m_j$ generate \mathcal{F} over V_j . The sets $X \setminus V_j$ are Zariski closed and thus are of the form

$$X \setminus V_j = \{Q_j = 0\}, \quad j = 1, 2, \dots, m$$

for some regular functions Q_j on X. It follows from Lemma 9 that there exist a multi-blowup $\sigma: \widetilde{X} \to X$ and a positive integer N such that for each $j = 1, 2, \ldots, m$ the sections

$$(Q_j^N)^{\sigma}\sigma^*s_{jk}$$
 $k=1,2,\ldots,m_j,$

extends to global sections $\widetilde{s_{jk}} \in \sigma^* \mathcal{F}(\widetilde{X})$. Since $\{\sigma^{-1}(V_j)\}_{j=1}^m$ is a Zariski open covering of \widetilde{X} , it is easy to check that the global sections

$$\widetilde{s_{jk}}, \ j=1,2,\ldots,m, \ k=1,2,\ldots,m_j$$

generate the pull-back $(\sigma^*\mathcal{F})_y$ for every $y \in \widetilde{X}$. This finishes the proof.

Corollary 1

Let \mathcal{F} be a coherent sheaf on a non-singular real affine variety X. Then there exists a multi-blowup $\sigma : \widetilde{X} \to X$ such that the pull-back $\sigma^* \mathcal{F}$ admits a global presentation:

$$\mathcal{O}^{p}_{\widetilde{X}} o \mathcal{O}^{q}_{\widetilde{X}} o \sigma^{*}\mathcal{F} o 0$$

Corollary 1

Let \mathcal{F} be a coherent sheaf on a non-singular real affine variety X. Then there exists a multi-blowup $\sigma : \widetilde{X} \to X$ such that the pull-back $\sigma^* \mathcal{F}$ admits a global presentation:

$$\mathcal{O}^{p}_{\widetilde{X}} \to \mathcal{O}^{q}_{\widetilde{X}} \to \sigma^{*}\mathcal{F} \to 0$$

Connections with works of Tognoli:

Corollary 2

Let \mathcal{F} be a coherent sheaf on a non-singular real affine variety X. Then there exists a multi-blowup $\sigma : \widetilde{X} \to X$ such that $\sigma^* \mathcal{F}$ is an A-coherent sheaf.