Nierówności wielomianowe na zbiorach algebraicznych w \mathbb{C}^N

Agnieszka Kowalska

Pedagogical University of Cracow

XXXIX KONFERENCJA I WARSZTATY "GEOMETRIA ANALITYCZNA I ALGEBRAICZNA"

The talk is based on Białas-Cież L., Calvi J.-P., A. Kowalska, *Polynomial inequalities on certain algebraic hypersurfaces*, J MATH ANAL APPL vol. 459 (2018), 822-838.

The talk is based on

Białas-Cież L., Calvi J.-P., A. Kowalska, *Polynomial inequalities on certain algebraic hypersurfaces*, J MATH ANAL APPL vol. 459 (2018), 822-838.

We study extensions of polynomial inequalities (Markov inequality, Schur inequality) and some approximation problems (Pleśniak Theorem, Admissible meshes) to compact subsets of a hypersurface of the form

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$ and we use y instead of z_{N+1} to emphasize the particular role played by this variable.

- 4 同 6 4 日 6 4 日 6

The talk is based on

Białas-Cież L., Calvi J.-P., A. Kowalska, *Polynomial inequalities on certain algebraic hypersurfaces*, J MATH ANAL APPL vol. 459 (2018), 822-838.

We study extensions of polynomial inequalities (Markov inequality, Schur inequality) and some approximation problems (Pleśniak Theorem, Admissible meshes) to compact subsets of a hypersurface of the form

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$ and we use y instead of z_{N+1} to emphasize the particular role played by this variable.

By $\mathcal{P}(\mathbb{C}^N)$ (resp. $\mathcal{P}_d(\mathbb{C}^N)$) we denote the space of all polynomials of N complex variables with coefficients in \mathbb{C} (resp. of total degree at most d). Sometimes, however, it is more convenient to write $\mathcal{P}(z_1, \ldots, z_N)$ or $\mathcal{P}(z)$, $z = (z_1, \ldots, z_N)$ for $\mathcal{P}(\mathbb{C}^N)$ and likewise for the subspaces of polynomials of given degree. We use standard multinomial notation. In particular, for $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{N}^N$, we have $|\alpha| = \alpha_1 + \cdots + \alpha_N$, $z^{\alpha} = z_1^{\alpha_1} \ldots z_N^{\alpha_N}$ and $D^{\alpha} = \partial^{|\alpha|} / (\partial z_1^{\alpha_1} \ldots \partial z_N^{\alpha_N})$.

Definition (Markov set and Markov inequality)

A compact set $E \subset \mathbb{C}^N$ is said to be a Markov set if there exist constants M, m > 0 such that

$$\|D^{\alpha}p\|_{E} \leq M^{|\alpha|}(\deg p)^{m|\alpha|}\|p\|_{E}, \quad p \in \mathcal{P}(\mathbb{C}^{N}), \quad \alpha \in \mathbb{N}^{N}.$$
(1)

Such inequality is called a Markov inequality for E.

A (1) > (1) > (2)

We use standard multinomial notation. In particular, for $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{N}^N$, we have $|\alpha| = \alpha_1 + \cdots + \alpha_N$, $z^{\alpha} = z_1^{\alpha_1} \ldots z_N^{\alpha_N}$ and $D^{\alpha} = \partial^{|\alpha|} / (\partial z_1^{\alpha_1} \ldots \partial z_N^{\alpha_N})$.

Definition (Markov set and Markov inequality)

A compact set $E \subset \mathbb{C}^N$ is said to be a Markov set if there exist constants M, m > 0 such that

$$\|D^{lpha}p\|_{E} \leq M^{|lpha|}(\deg p)^{m|lpha|}\|p\|_{E}, \quad p \in \mathcal{P}(\mathbb{C}^{N}), \quad lpha \in \mathbb{N}^{N}.$$
 (1)

Such inequality is called a *Markov inequality* for *E*.

By iteration, inequality (1) is satisfied for all α once it is satisfied for all $|\alpha|$ of length one.

・ 同・ ・ ヨ・・・

We use standard multinomial notation. In particular, for $\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{N}^N$, we have $|\alpha| = \alpha_1 + \cdots + \alpha_N$, $z^{\alpha} = z_1^{\alpha_1} \ldots z_N^{\alpha_N}$ and $D^{\alpha} = \partial^{|\alpha|} / (\partial z_1^{\alpha_1} \ldots \partial z_N^{\alpha_N})$.

Definition (Markov set and Markov inequality)

A compact set $E \subset \mathbb{C}^N$ is said to be a Markov set if there exist constants M, m > 0 such that

$$\|D^{lpha}p\|_{E} \leq M^{|lpha|}(\deg p)^{m|lpha|}\|p\|_{E}, \quad p \in \mathcal{P}(\mathbb{C}^{N}), \quad lpha \in \mathbb{N}^{N}.$$
 (1)

Such inequality is called a *Markov inequality* for *E*.

By iteration, inequality (1) is satisfied for all α once it is satisfied for all $|\alpha|$ of length one.

Considerable work has been done in the last decades about the problem of finding (geometrical) conditions ensuring that a given compact is a Markov set and that of finding (near) optimal constants in Markov inequalities for a given compact set.

• A compact set $E \subset \mathbb{C}^N$ is a Markov set if and only if so is A(E) where A is any affine automorphism of \mathbb{C}^N .

向下 イヨト イヨト

- A compact set $E \subset \mathbb{C}^N$ is a Markov set if and only if so is A(E) where A is any affine automorphism of \mathbb{C}^N .
- A finite union of Markov sets is a Markov set.

周 ト イモト イモト

- A compact set $E \subset \mathbb{C}^N$ is a Markov set if and only if so is A(E) where A is any affine automorphism of \mathbb{C}^N .
- A finite union of Markov sets is a Markov set.
- **3** The Cartesian product of two Markov sets E_i in \mathbb{C}^{N_i} , i = 1, 2 is a Markov set in $\mathbb{C}^{N_1+N_2}$.

周 トレイモト イモト

- A compact set $E \subset \mathbb{C}^N$ is a Markov set if and only if so is A(E) where A is any affine automorphism of \mathbb{C}^N .
- A finite union of Markov sets is a Markov set.
- The Cartesian product of two Markov sets E_i in C^{N_i}, i = 1, 2 is a Markov set in C^{N₁+N₂}.
- A Markov set E in C^N is P(C^N)-determining (for short determining) that is, p ∈ P(C^N) and ||p||_E = 0 implies p = 0. (Otherwise, (1) cannot hold for a polynomial p of minimal positive degree which vanishes on E.)

(4月) (4日) (4日)

Theorem (Pleśniak Theorem)

A determining compact set E in \mathbb{C}^N is a Markov set if and only if there exist positive constants M and m such that

$$\|p\|_{E_n} \leq M \|p\|_E, \quad p \in \mathcal{P}_n(\mathbb{C}^N), \quad n \in \mathbb{N}$$
 (2)

where $E_n = \{z \in \mathbb{C}^N : \operatorname{dist}(z, E) \le 1/n^m\}$. The constant *m* coincides with the exponent *m* in (1).

A (1) > (1) > (1)

Theorem (Pleśniak Theorem)

A determining compact set E in \mathbb{C}^N is a Markov set if and only if there exist positive constants M and m such that

$$\|p\|_{E_n} \leq M \|p\|_E, \quad p \in \mathcal{P}_n(\mathbb{C}^N), \quad n \in \mathbb{N}$$
 (2)

where $E_n = \{z \in \mathbb{C}^N : \operatorname{dist}(z, E) \le 1/n^m\}$. The constant *m* coincides with the exponent *m* in (1).

The inequality (2) is called a *Pleśniak Inequality*.

・ 同・ ・ ヨ・ ・

Another important inequality related to Markov inequality is concerned with the problem of bounding a factor of a polynomial in terms of the polynomial itself.

Definition (Division set and division inequality)

A determining compact set E in \mathbb{C}^N is said to be a *division set* if for all non zero polynomial q, we have

$$\|p\|_{E} \leq D(E,q,n) \|pq\|_{E}, \quad p \in \mathcal{P}_{n}(\mathbb{C}^{N}),$$
(3)

where D(E, q, n) grows polynomially in n.

Another important inequality related to Markov inequality is concerned with the problem of bounding a factor of a polynomial in terms of the polynomial itself.

Definition (Division set and division inequality)

A determining compact set E in \mathbb{C}^N is said to be a *division set* if for all non zero polynomial q, we have

$$\|p\|_{E} \leq D(E,q,n) \|pq\|_{E}, \quad p \in \mathcal{P}_{n}(\mathbb{C}^{N}),$$
(3)

where D(E, q, n) grows polynomially in n.

The most classical division inequality, which holds for E = [-1, 1], is due to Schur and states that

$$\|p\|_{[-1,1]} \leq (1 + \deg p) \|pq\|_{[-1,1]}, \quad q(x) = x, \quad p \in \mathcal{P}(\mathbb{R}).$$

For this reason division inequalities are sometimes called Schur inequalities.

It is shown by Leokadia Bialas-Ciez in 1999 that, in the one-dimensional case, Markov sets and division sets coincide.

- 4 同 2 4 日 2 4 日 2

It is shown by Leokadia Bialas-Ciez in 1999 that, in the one-dimensional case, Markov sets and division sets coincide. Now, we have the following generalization in \mathbb{C}^N

Theorem

Let E be a compact set in \mathbb{C}^N satisfying Markov inequality (1) and $q \in \mathcal{P}(\mathbb{C}^N)$ a non zero polynomial of degree d. There exists a positive constant C depending only on q and E such that

$$\|p\|_{E} \leq C(d+n)^{dm} \|pq\|_{E}, \quad p \in \mathcal{P}_{n}(\mathbb{C}^{N}).$$
(4)

We will need a slight extension of this theorem to the case of polynomial vectors.

< E

We will need a slight extension of this theorem to the case of polynomial vectors.

Let $\mathbf{P} = (p_1, \ldots, p_l)^T$ is a column vector whose entries p_i are polynomials in $\mathcal{P}(\mathbb{C}^N)$ and $\mathbf{A} = (q_{ij})$ is a $l \times l$ matrix whose entries q_{ij} are elements of $\mathcal{P}(\mathbb{C}^N)$. We denote $\|\mathbf{P}\|_E = \max\{\|p_i\|_E : i = 1, \ldots, l\}$ and $\|\mathbf{A}\|_E = \sum_{j=1}^n \|\operatorname{Col}_j(\mathbf{A})\|_E$ where $\operatorname{Col}_i(\mathbf{A})$ denotes the *j*-th column of \mathbf{A} .

We will need a slight extension of this theorem to the case of polynomial vectors.

Let $\mathbf{P} = (p_1, \ldots, p_l)^T$ is a column vector whose entries p_i are polynomials in $\mathcal{P}(\mathbb{C}^N)$ and $\mathbf{A} = (q_{ij})$ is a $l \times l$ matrix whose entries q_{ij} are elements of $\mathcal{P}(\mathbb{C}^N)$. We denote $\|\mathbf{P}\|_E = \max\{\|p_i\|_E : i = 1, \ldots, l\}$ and $\|\mathbf{A}\|_E = \sum_{j=1}^n \|\operatorname{Col}_j(\mathbf{A})\|_E$ where $\operatorname{Col}_i(\mathbf{A})$ denotes the *j*-th column of \mathbf{A} .

Corollary

Let $E \subset \mathbb{C}^N$ be a compact set in \mathbb{C}^N satisfying Markov inequality (1) and **A** be a fixed polynomial matrix as above whose determinant is a non zero polynomial of degree r. Then there exists a positive constant c depending only on **A** and E such that

$$\|\mathbf{P}\|_{E} \leq c(r+n)^{rm} \|\mathbf{AP}\|_{E}, \quad \mathbf{P} = (p_{1}, \dots, p_{l})^{T}, \quad p_{i} \in \mathcal{P}_{n}(\mathbb{C}^{N}).$$
(5)

We work with

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$

イロン イヨン イヨン イヨン

We work with

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$

Baran M., A.K., Sets with the Bernstein and generalized Markov properties, Ann. Pol. Math. 111.3(2014), 259-270.

(4月) イヨト イヨト

We work with

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$

Baran M., A.K., Sets with the Bernstein and generalized Markov properties, Ann. Pol. Math. 111.3(2014), 259-270.

In this paper we consider Bernstein property and generalizations of Markov inequality and Pleśniak condition for compact symetric subsets of algebraic sets of the form

$$\mathbb{V} = \left\{ (\widetilde{x}, x_N) \in \mathbb{R}^N : x_N^2 = Q(\widetilde{x}) \right\},\,$$

where $\widetilde{x} \in \mathbb{R}^{N-1}$, $Q \in \mathbb{R}[x_1, \ldots, x_{N-1}]$ such that $Q^{-1}([0, +\infty)) \neq \emptyset$ and deg $Q \leq d$.

(不同) とうき くうう

向下 イヨト イヨト

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$

and the group \mathbb{U}_k of the *k*-th roots of unity in \mathbb{C} . Any generator of \mathbb{U}_k is called a primitive *k*-th root of unity.

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$

and the group \mathbb{U}_k of the *k*-th roots of unity in \mathbb{C} . Any generator of \mathbb{U}_k is called a primitive *k*-th root of unity.

A basic but fundamental observation is that f is invariant under the group \mathbb{U}_k , that is,

$$f(z,wy)=f(z,y)$$
 for any $w\in \mathbb{U}_k.$

$$V(f) = \{f(z, y) = 0, (z, y) = (z_1, \dots, z_N, y) \in \mathbb{C}^{N+1}\},\$$

where $f(z, y) = y^k - s(z)$, $k \ge 1$ and s is a non constant polynomial in $\mathcal{P}(\mathbb{C}^N)$

and the group \mathbb{U}_k of the *k*-th roots of unity in \mathbb{C} . Any generator of \mathbb{U}_k is called a primitive *k*-th root of unity.

A basic but fundamental observation is that f is invariant under the group \mathbb{U}_k , that is,

$$f(z,wy)=f(z,y)$$
 for any $w\in \mathbb{U}_k.$

In particular $(z,y) \in V \implies (z,wy) \in V$.

Recall that the ring of polynomials on V = V(f) is

$$\mathcal{P}(V) = \left\{ p_{|V}, p \in \mathcal{P}(z, y) \right\}.$$

We have a very simple algebraic structure for $\mathcal{P}(V)$ as shown by the following lemma and this is one of the two key technical points used in the sequel.

Lemma	
We have	
	$\mathcal{P}(z)\otimes \mathcal{P}_{k-1}(y)\simeq \mathcal{P}(V).$

< **₩** ► < **⇒** ►

Recall that the ring of polynomials on V = V(f) is

$$\mathcal{P}(V) = \left\{ p_{|V}, p \in \mathcal{P}(z, y) \right\}.$$

We have a very simple algebraic structure for $\mathcal{P}(V)$ as shown by the following lemma and this is one of the two key technical points used in the sequel.

Lemma

We have

$$\mathcal{P}(z)\otimes \mathcal{P}_{k-1}(y)\simeq \mathcal{P}(V).$$

As usual, $\mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y)$ denotes the subspace of $\mathcal{P}(z, y)$ formed of all polynomials of the form

$$\sum_{i=0}^{k-1} c_i(z) y^i$$
 with $c_i \in \mathcal{P}(z).$

イロト イポト イラト イラト

A specific isomorphism

$$\Phi:\mathcal{P}(z)\otimes\mathcal{P}_{k-1}(y)\longrightarrow\mathcal{P}(V)$$

is merely the restriction to V, that is $\Phi(p) = p_{|V}$ while Φ^{-1} is the unique linear map on $\mathcal{P}(V)$ obtained by substituting s(z) for y^k , that is

$$\Phi^{-1}\left((z^{\alpha}y^{m})_{|V}\right)=z^{\alpha}s^{q}(z)y^{r}$$

where $m = qk + r, r \in \{0, ..., k - 1\}.$

The linear map Φ above is one-to-one. Thus, on V, any polynomial coincides with a polynomial from $\mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y)$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

We need to suitably define the degree of a polynomial on V. The natural definition (which works for any algebraic set) is as follows.

Definition

The degree deg_V p of a polynomial $p \in \mathcal{P}(V)$ is defined as

$$\deg_V p = \min\left\{\deg P : P_{|V} = p\right\}.$$

We need to suitably define the degree of a polynomial on V. The natural definition (which works for any algebraic set) is as follows.

Definition

The degree deg_V p of a polynomial $p \in \mathcal{P}(V)$ is defined as

$$\deg_V p = \min\left\{\deg P : P_{|V} = p\right\}.$$

In particular, for any $P \in \mathcal{P}(z, y)$, we have

 $\deg_V P_{|V} \leq \deg P.$

イロン イヨン イヨン イヨン

Lemma

For any $p \in \mathcal{P}(V)$ we have

$$\deg_V p \leq \deg \Phi^{-1}(p) \leq \max\left\{1, \frac{\deg s}{k}\right\} \deg_V p$$

æ

Lemma

For any $p \in \mathcal{P}(V)$ we have

$$\deg_V p \leq \deg \Phi^{-1}(p) \leq \max\left\{1, rac{\deg s}{k}
ight\} \deg_V p$$

Lemma

If
$$p(z, y) = \sum_{i=0}^{k-1} p_i(z)y^i \in \mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y)$$
 then for any $i = 0, \dots, k-1$ and $(z, y) \in \mathbb{C}^{N+1}$,
 $|p_i(z)y^i| \leq \max_{w \in \mathbb{U}_k} |p(z, wy)|.$

(日) (四) (王) (王) (王)

To explain the way we will use this result we first need the following definition.

Definition

A compact set E in V is said to be \mathbb{U}_k -invariant if $(z, y) \in E$ implies $(z, wy) \in E$ for any $w \in \mathbb{U}_k$.

(4月) (4日) (4日)

To explain the way we will use this result we first need the following definition.

Definition

A compact set E in V is said to be \mathbb{U}_k -invariant if $(z, y) \in E$ implies $(z, wy) \in E$ for any $w \in \mathbb{U}_k$.

The whole algebraic set V is \mathbb{U}_k -invariant.

< **₩** ► < **⇒** ►

To explain the way we will use this result we first need the following definition.

Definition

A compact set E in V is said to be \mathbb{U}_k -invariant if $(z, y) \in E$ implies $(z, wy) \in E$ for any $w \in \mathbb{U}_k$.

The whole algebraic set V is \mathbb{U}_k -invariant.

Lemma

Let E be a \mathbb{U}_k -invariant compact subset of V. If

$$p(z,y) = \sum_{i=0}^{k-1} p_i(z) y^i \in \mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y)$$

then

$$\|p_i(z)y^i\|_E \le \|p\|_E, \quad i=0,\ldots,k-1.$$

One can find similar result for circled sets

Lemma

Let $d \in \mathbb{N}$ and $E \subset C^N$ be a compact, circled set, i.e. $(z, w) \in E$ implies $(e^{it}z, e^{it}w) \in E$ for all real t. Then for any polynomial $p_d = h_d + h_{d-1} + \ldots + h_0$ of degree d written as a sum of homogeneous polynomials, we have $||h_j||_E \leq ||p_d||_E$ for $j = 0, \ldots, d$.

One can find similar result for circled sets

Lemma

Let $d \in \mathbb{N}$ and $E \subset C^N$ be a compact, circled set, i.e. $(z, w) \in E$ implies $(e^{it}z, e^{it}w) \in E$ for all real t. Then for any polynomial $p_d = h_d + h_{d-1} + \ldots + h_0$ of degree d written as a sum of homogeneous polynomials, we have $||h_j||_E \leq ||p_d||_E$ for $j = 0, \ldots, d$.

In the general case, when Z is the set of zeros of a polynomial g in N + 1 complex variables, one can ask about a condition which implies a similar estimate for compact subsets of Z. What about other classes of compact subsets of algebraic varieties with some symmetries which gives us the similar estimation?

(不同) とうき くうう

Given a compact set E in $V=\{f=0\}$ as in the previous section, we set

$$|p|_{\alpha,E}^{V} := \inf \left\{ \|D^{\alpha}P\|_{E} : P_{|V} = p, P \in \mathcal{P}(z,y) \right\}, \quad p \in \mathcal{P}(V).$$

→ ∃ →

Given a compact set E in $V = \{f = 0\}$ as in the previous section, we set

$$|p|_{\alpha,E}^{V} := \inf \left\{ \|D^{\alpha}P\|_{E} : P_{|V} = p, P \in \mathcal{P}(z,y)
ight\}, \quad p \in \mathcal{P}(V).$$

Definition (Markov set and Markov inequality on V)

A compact set $E \subset V$ is said to be a *V-Markov set* if there exist constants M, m > 0 such that

$$|p|_{\alpha,E}^{V} \leq M^{|\alpha|} (\deg_{V} p)^{m|\alpha|} \|p\|_{E}, \quad p \in \mathcal{P}(V), \quad \alpha \in \mathbb{N}^{N}.$$
 (6)

This inequality is called a *Markov inequality* for E in V or a V-Markov inequality.

▲ □ ► ▲ □ ►

Given a compact set E in $V = \{f = 0\}$ as in the previous section, we set

$$|p|_{\alpha,E}^V := \inf \left\{ \|D^{\alpha}P\|_E : P_{|V} = p, P \in \mathcal{P}(z,y)
ight\}, \quad p \in \mathcal{P}(V).$$

Definition (Markov set and Markov inequality on V)

A compact set $E \subset V$ is said to be a *V-Markov set* if there exist constants M, m > 0 such that

$$|p|_{\alpha,E}^{V} \leq M^{|\alpha|} (\deg_{V} p)^{m|\alpha|} ||p||_{E}, \quad p \in \mathcal{P}(V), \quad \alpha \in \mathbb{N}^{N}.$$
 (6)

This inequality is called a *Markov inequality* for E in V or a V-Markov inequality.

This definition raises evident difficulties as it seems complicated to estimate $|p|_{\alpha,E}^V$.

- (同) - (三) - (三)

In fact, we often prove a much stronger inequality in which $|p|_{\alpha,E}^{V}$ is replaced by its upper bound $||D^{\alpha}\Phi^{-1}(p)||_{E}$.

伺い イヨト イヨト

In fact, we often prove a much stronger inequality in which $|p|_{\alpha,E}^V$ is replaced by its upper bound $||D^{\alpha}\Phi^{-1}(p)||_E$. Another obvious difficultly is that, in contrast with the ordinary case, it is not possible to simply iterate inequality (6) from the case $|\alpha| = n$ to $|\alpha| = n + 1$.

- (目) - (日) - (日)

In fact, we often prove a much stronger inequality in which $|p|_{\alpha,E}^V$ is replaced by its upper bound $||D^{\alpha}\Phi^{-1}(p)||_E$. Another obvious difficultly is that, in contrast with the ordinary case, it is not possible to simply iterate inequality (6) from the case $|\alpha| = n$ to $|\alpha| = n + 1$.

The isomorphism $\mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y) \simeq \mathcal{P}(V)$ next suggests the following definition.

(4月) イヨト イヨト

In fact, we often prove a much stronger inequality in which $|p|_{\alpha,E}^{V}$ is replaced by its upper bound $||D^{\alpha}\Phi^{-1}(p)||_{E}$. Another obvious difficultly is that, in contrast with the ordinary case, it is not possible to simply iterate inequality (6) from the case $|\alpha| = n$ to $|\alpha| = n + 1$.

The isomorphism $\mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y) \simeq \mathcal{P}(V)$ next suggests the following definition.

To say that **W** subspace of $\mathcal{P}(\mathbb{C}^{N+1})$ is invariant under derivation simply means that $p \in \mathbf{W}$ implies $D^{\alpha}p \in \mathbf{W}$ for all α and, of course, it suffices to check the property for $|\alpha| = 1$. The space $\mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y)$ is obviously invariant by derivation.

イロト イポト イヨト イヨト

Definition (Markov set and Markov inequality on **W**)

Let **W** be an infinite dimensional subspace of $\mathcal{P}(\mathbb{C}^{N+1})$ which is invariant under derivation. A compact set $E \subset \mathbb{C}^{N+1}$ is said to be a **W**-Markov set if there exist M, m > 0 such that

$$\|D^{\alpha}p\|_{E} \leq M^{|\alpha|}(\deg p)^{m|\alpha|}\|p\|_{E}, \quad p \in \mathbf{W}, \quad \alpha \in \mathbb{N}^{N}.$$
(7)

This inequality is called a **W**-Markov inequality for E.

Definition (Markov set and Markov inequality on **W**)

Let **W** be an infinite dimensional subspace of $\mathcal{P}(\mathbb{C}^{N+1})$ which is invariant under derivation. A compact set $E \subset \mathbb{C}^{N+1}$ is said to be a **W**-Markov set if there exist M, m > 0 such that

$$\|D^{\alpha}p\|_{E} \leq M^{|\alpha|}(\deg p)^{m|\alpha|}\|p\|_{E}, \quad p \in \mathbf{W}, \quad \alpha \in \mathbb{N}^{N}.$$
(7)

This inequality is called a **W**-Markov inequality for E.

The constant m in (6) and in (7) is called the *exponent* of the respective inequalities.

Definition (Markov set and Markov inequality on **W**)

Let **W** be an infinite dimensional subspace of $\mathcal{P}(\mathbb{C}^{N+1})$ which is invariant under derivation. A compact set $E \subset \mathbb{C}^{N+1}$ is said to be a **W**-Markov set if there exist M, m > 0 such that

$$\|D^{\alpha}p\|_{E} \leq M^{|\alpha|}(\deg p)^{m|\alpha|}\|p\|_{E}, \quad p \in \mathbf{W}, \quad \alpha \in \mathbb{N}^{N}.$$
(7)

This inequality is called a **W**-Markov inequality for E.

The constant m in (6) and in (7) is called the *exponent* of the respective inequalities.

Lemma

Let E be a compact subset of V and $\mathbf{W} = \mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y)$. If E is a **W**-Markov set then E is also a V-Markov set. The exponent m in the **W**-Markov inequality may be used in the V-Markov inequality as well.

イロン イヨン イヨン イヨン

э

From now on, we denote by π the projection from $V \subset \mathbb{C}^{N+1}$ onto the space \mathbb{C}^N , i.e. $\pi(z, y) = z$ for $(z, y) \in V$. In particular, if *E* is a compact subset of *V* then

$$\pi(E) = \{ z \in \mathbb{C}^N : (z, y) \in E \text{ for some } y \in \mathbb{C} \}.$$

Theorem

Let E be a \mathbb{U}_{K} -invariant compact set in V and $\mathbf{W} = \mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y)$. Then E is a \mathbf{W} -Markov set with $\mathbf{W} = \mathcal{P}(z) \otimes \mathcal{P}_{k-1}(y)$ if and only if $\pi(E)$ is a Markov set in \mathbb{C}^{N} . In particular, E is a V-Markov set with exponent $m\left(1 + \frac{(k-1)d}{k}\right)$ as soon as $\pi(E)$ is a Markov set with exponent m in \mathbb{C}^{N} .

- 4 同 6 4 日 6 4 日 6

Example

Let $V = \{y^3 = z^2 - 1\} \subset \mathbb{C}^2$ and \mathbb{D} be the (closed) unit disc in \mathbb{C} . The compact set $E = \{(z, y) \in V : y \in \mathbb{D}\}$ is a V-Markov set.

イロン スポン イヨン イヨン

Example

Let $V = \{y^3 = z^2 - 1\} \subset \mathbb{C}^2$ and \mathbb{D} be the (closed) unit disc in \mathbb{C} . The compact set $E = \{(z, y) \in V : y \in \mathbb{D}\}$ is a V-Markov set.

We have $\pi(E) = \{z \in \mathbb{C} : z^2 - 1 \in \mathbb{D}\}$ which is the lemniscate of Bernoulli (with its interior) and E is \mathbb{U}_3 -invariant. By a result of Szegö and Bernstein's pointwise estimate we can show that $\pi(E)$ is a Markov set with exponent m = 1. Therefore, the set E is a **W**-Markov set and the exponent can be taken as $1 + 2 \cdot (2/3) = 7/3$.

A compact set E in V is \mathcal{P}_V -determining if for all $p \in \mathcal{P}(z, y)$, p = 0 on E implies p = 0 on V.

イロト イポト イヨト イヨト

э

A compact set E in V is \mathcal{P}_V -determining if for all $p \in \mathcal{P}(z, y)$, p = 0 on E implies p = 0 on V.

Definition (Division set and division inequality on V)

A \mathcal{P}_V -determining compact subset E in V is said to be a V-division set if, for any non constant polynomial q on V, there exists a sequence $D_V(E, q, n)$ in \mathbb{R}^+ which grows polynomially in n such that

$$\|p\|_E \leq D_V(E,q,n) \|pq\|_E, \quad \deg_V p \leq n.$$

Any specific polynomial bound for $D_V(E, q, n)$ is called a *V*-division inequality.

・ 同・ ・ ヨ・

A compact set E in V is \mathcal{P}_V -determining if for all $p \in \mathcal{P}(z, y)$, p = 0 on E implies p = 0 on V.

Definition (Division set and division inequality on V)

A \mathcal{P}_V -determining compact subset E in V is said to be a V-division set if, for any non constant polynomial q on V, there exists a sequence $D_V(E, q, n)$ in \mathbb{R}^+ which grows polynomially in n such that

$$\|p\|_E \leq D_V(E,q,n) \|pq\|_E, \quad \deg_V p \leq n.$$

Any specific polynomial bound for $D_V(E, q, n)$ is called a *V*-division inequality.

Theorem

Assume that the polynomial f defining V is irreducible and let E be a \mathbb{U}_k -invariant compact set in V. If $\pi(E)$ is a Markov set then E is a V-division set.

イロン イヨン イヨン イヨン

This is a particular case of the following result which does not require f to be irreducible.

< E

This is a particular case of the following result which does not require f to be irreducible.

Theorem

Let E be a \mathbb{U}_k -invariant, \mathcal{P}_V -determining compact set in V such that $\pi(E)$ is a Markov set in \mathbb{C}^N and q be a non constant polynomial in $\mathcal{P}(z, y)$. There exists a sequence $D_V(E, q, n)$ that grows polynomially in n such that

 $\|p\|_E \leq D_V(E,q,n) \|pq\|_E$ for deg_V $p \leq n$

if and only if q and f are relatively prime.

Finally, we can advertise that our results allow us to construct an admissible mesh on \mathbb{U}_k -invariant compact subset of V.

Definition

Let *E* be a compact set in *V*. A sequence of sets $(A_n)_{n \in \mathbb{N}}$ in *E* is called an admissible mesh if:

- **()** the cardinality of A_n grows polynomially in n as $n \to \infty$,
- Where exist a positive constant C (independent of n) such that for all P ∈ P(V),

$$\|P\|_{E} \leq C \|P\|_{\mathcal{A}_{n}} \text{ if } \deg_{V} P \leq n.$$
(8)

We denote by $\pi(K)$ the projection of the set $K \subset \mathbb{C}^{N+1}$ on the space \mathbb{C}^N , i.e.

$$\pi(K) := \{ z \in \mathbb{C}^N : (z, y) \in K \text{ for some } y \in \mathbb{C} \}.$$
(9)

Proposition

If E is a \mathbb{U}_k -invariant compact set in V and $(\mathcal{A}_n)_{n\in\mathbb{N}}$ is an admissible mesh for $\pi(E)$ then $\pi^{-1}((\mathcal{A}_n)_{n\in\mathbb{N}})$ is an admissible mesh for E.

Our results concern algebraic hypersurfaces of the form

$$V = \{z_{N+1}^{k} = s(z_1, \dots, z_N)\} \subset \mathbb{C}^{N+1},$$
(10)

where s is a non constant polynomial of N variables. We supposed that our results can be generalized by using similar approach to other classes of algebraic varieties.

Thank you for your attention!

・ロト ・回ト ・ヨト ・ヨ