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LIMITING CASES OF A UNIVALENCE CRITERION
OF HOLOMORPHIC FUNCTIONS

Z. Lewandowski, A. Weso lowski (Lublin)

1. In this article we investigate limiting cases of the following univalence
criterion

Theorem 1 ([3]). Let a ≥ 1
2 , s = α + βi, α > 0, β ∈ R = (−∞,∞) be fixed

numbers and let f(z) = z + . . . and g(z) be regular in D = {z : |z| < 1}. If the
following inequalities

(1)

∣∣∣∣ zf ′(z)

f(z)g(z)
− as

α

∣∣∣∣ ≤ a|s|
α

and

(2)

∣∣∣∣|z| 2aα zf ′(z)

f(z)g(z)
+
(

1 − |z| 2aα
)[

zf ′(z)

f(z)
+ s

zg′(z)

g(z)

]
− as

α

∣∣∣∣ ≤ a|s|
α

hold for z ∈ D, then f is univalent in D.

These limiting cases seem to be interesting as they lead to some well-
known and important classes of univalent functions as well as to new univa-
lence criteria (see Theorems 5 and 6).

In what follows we need the following important theorem to prove some
of our results.

Theorem 2 ([5]). Let f be Bazilevič function of type (α, β). Then, for each
r ∈ (0, 1),∫ Θ2

Θ1

{
1 + Re

[
zf ′′(z)

f ′(z)
+ (α− 1)

zf ′(z)

f(z)

]
− β Im

zf ′(z)

f(z)

}
dΘ > −π, z = reiΘ,
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whenever Θ1 < Θ2. Conversely, if f is regular in D, with f(0) = 0, f(z) ̸= 0
(0 < |z| < 1) and f ′(z) ̸= 0 for z ∈ D, and if f satisfies the last inequality for
0 < r < 1, where α ≥ 0 and β ∈ R, then f is univalent in D, and is Bazilevič
function of type (α, β) in the case α > 0.

Let us remind that f is Bazilevič function of type (α, β) if for some α > 0
it can be represented by the formula

f(z) =

[∫ z

0

p(z)

p(0)
hα(z)ziβ−1dz

] 1
α+iβ

for z ∈ D,

where h, h(0) = 0, is a starlike and univalent function in D, p is regular, and
has positive real part there ([1]).

In what follows we denote by B(α, β), α ≥ 0, β ∈ R, the class of functions f
satisfying the assumption of Theorem 2 and having the usual normalization
f(0) = 0, f ′(0) = 1.

2. We come now to the mentioned limiting cases.
a) a → ∞. In this case we obtain the class B(α, β) of Bazilevič functions

(α > 0). It was considered earlier in [2].
b) α → 0, β = 0. Then (1) and (2) lead to he following inequalities∣∣∣∣ zf ′(z)

f(z)g(z)
− a

∣∣∣∣ ≤ a and

∣∣∣∣zf ′(z)

f(z)
− a

∣∣∣∣ ≤ a,

which determine some subclass of the class S∗ of functions of the form f(z) =
z + . . . , that are univalent and starlike with respect to the origin in D.

c) α → 0, β → β0 ̸= 0. Relations (1) and (2) lead to the following inequal-
ities

(3) Re

[
1

iβ0

zf ′(z)

f(z)g(z)

]
≥ 0

and

(4) Re

[
1

iβ0

zf ′(z)

f(z)
+

zg′(z)

g(z)

]
≥ 0

for z ∈ D, respectively.
Now, we shall prove the following

Theorem 3. Let f(z) = z + . . . and g(z) be regular in D with f ′(z) ̸= 0 for

z ∈ D, and let (3) and (4) hold in D. Then f ∈ B
(

0,− 1
β0

)
.

Proof. In what follows let us put β0 = β ∈ R− {0}. From (3) we obtain

(5)
1

iβ

zf ′(z)

f(z)g(z)
= p(z), p(0) =

1

iβg(0)
, p(0) ̸= 0, Re p(z) ≥ 0 for z ∈ D.

Inequality (4), according to maximum principle, gives

(6)
1

iβ

zf ′(z)

f(z)
+

zg′(z)

g(z)
=

1

iβ
, z ∈ D.
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We deduce from (5) and (6) that

(7)
1

iβ

zf ′(z)

f(z)
+ 1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
− zp′(z)

p(z)
=

1

iβ
, z ∈ D.

It follows from (7) and by Re p(z) ≥ 0 in D and p(0) ̸= 0 that

(8)
∫ Θ2

Θ1

Re

{
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

1

iβ

zf ′(z)

f(z)

}
dΘ > −π,

z = reiΘ, r ∈ (0, 1),

whenever Θ1 < Θ2. Our assertion follows by Theorem 2 for α = 0.

d) α → 0, β → ±∞. Inequalities (1) and (2) lead to the relation (7) and
for β → ±∞ we obtain the limiting case of (8), which by Theorem 2 for α = 0
proves that f ∈ B(0, 0).

Remark ([5]). f ∈ B(0, β) if and only if

zf ′(z)

f(z)

(
f(z)

z

)iβ

= h(z),

where Re (eiλh(z)) > 0 for z ∈ D and some λ ∈ R.
Hence B(0, 0) = Š denotes the class of univalent and spiral-like functions

of Špaček ([6]).
e) α → 0, β → 0.

10 β
α → ±∞. Then (1) and (2) lead to Re

{
∓i zf ′(z)

f(z)g(z)

}
≥ 0 and

Re
{
∓i zf

′(z)
f(z)

}
≥ 0 for z ∈ D, respectively, which, in turn, according to the

minimum principle of harmonic functions, determine the function f(z) = z
in D.

20 α → 0, β
α → β1 ̸= 0. From (1) we obtain∣∣∣∣eiγ zf ′(z)

af(z)
−
√

1 + β2
1

∣∣∣∣ ≤ √
1 + β2

1 , γ = arg(1 + iβ1).

This inequality determines immediately a subclass of Š.
30 α → 0, β

α → 0. Then |s|
α → 1 and from (1) and (2) we obtain∣∣∣∣ zf ′(z)

f(z)g(z)
− a

∣∣∣∣ ≤ a and

∣∣∣∣zf ′(z)

f(z)
− a

∣∣∣∣ ≤ a.

Thus in this case we obtain a subclass of S∗.

3. Now let α > 0 be a fixed number and β → ±∞. Then (1) and (2) lead
to

g(z) = ±ip(z)
zf ′(z)

f(z)
and

∣∣∣∣ (1 − |z| 2aα
) zg′(z)

g(z)
− a

α

∣∣∣∣ ≤ a

α
for z ∈ D,
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respectively, where Re p(z) ≥ 0, z ∈ D. Hence we obtain by simple calculation

(9)

∣∣∣∣ (1 − |z| 2aα
)(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zp′(z)

p(z)
− a

α

) ∣∣∣∣ ≤ a

α
for z ∈ D.

This inequality, in turn, implies the following one

Re

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zp′(z)

p(z)

)
≥ 0 for z ∈ D.

Hence we obtain for Θ1 < Θ2∫ Θ2

Θ1

Re

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zp′(z)

p(z)

)
dΘ > −π, z = reiΘ, r ∈ (0, 1).

Thus by Theorem 2 and by Remark f ∈ Š.
4. In this section we will consider the case α → ∞. There are two following

possibilities.

a) α → ∞, β
α → ±∞. Then (1) leads to the equality g(z) = ±ip(z) zf ′(z)

f(z)

where Re p(z) ≥ 0 in D. Multiplying both sides of (2) by α
|β| and considering

the equality

lim
α→∞

[
α(1 − |z| 2aα )

]
= −2a ln |z|, |z| < 1,

we obtain from (2) in the limit the following inequality∣∣∣∣1 + 2 ln |z|zg
′(z)

g(z)

∣∣∣∣ ≤ 1.

From the above considerations we eventually obtain∣∣∣∣1 + 2 ln |z|
(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zp′(z)

p(z)

) ∣∣∣∣ ≤ 1 for z ∈ D.

This inequality is true if and only if f satisfies the following differential
equation

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zp′(z)

p(z)
= 0 for z ∈ D.

It is easy to verify that each solution f of this equation is an element of S∗.
b) α → ∞, β

α → β0. Then S
α = 1 + iβα → 1 + iβ0. Multiplying both sides of

(1) and (2) by α
|β| and considering the equality

lim
α→∞

[
α
(

1 − |z| 2aα
)]

= −2a ln |z|, |z| < 1,

we obtain from (1) and (2) in the limit the following inequalities∣∣∣∣e−iφ0
zf ′(z)

f(z)g(z)
− a

√
1 + β2

0

∣∣∣∣ ≤ a
√

1 + β2
0
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and ∣∣∣∣e−iφ0
zf ′(z)

f(z)
− 2a

√
1 + β2

0

zg′(z)

g(z)
ln |z| − a

√
1 + β2

0

∣∣∣∣ ≤ a
√

1 + β2
0

respectively, where φ0 = arg(1 + β0) and z ∈ D.
If we put g1(z) = aeiφ0

√
1 + β2

0g(z) and denote g1 again by g, then we
obtain from the last inequalities the following ones

(10)

∣∣∣∣ zf ′(z)

f(z)g(z)
− 1

∣∣∣∣ ≤ 1

and

(11)

∣∣∣∣ zf ′(z)

f(z)g(z)
− 2 ln |z|zg

′(z)

g(z)
− 1

∣∣∣∣ ≤ 1,

respectively, for z ∈ D.
These inequalities represent a univalence criterion of f in D but it is not

evident immediately. It will be proved in the next section (Theorem 4).

5. We come now to the formulation and proof of

Theorem 4. Let f(z) = z + . . . and g(z) be regular in D with f ′(z) ̸= 0 there,
and let inequalities (10) and (11) hold for z ∈ D. Then f is univalent in D.

Proof. It follows by (10) that g(z) ̸= 0 for z ∈ D and
∣∣ 1
g(0) − 1

∣∣ ≤ 1 or

Re g(0) ≥ 1
2 . Let us first assume that Re g(0) = 1

2 . Then we deduce by
(10) that left-hand side of (10) attains its maximum at the point z = 0.

Thus according to maximum principle we obtain zf ′(z)
f(z)g(z) = 1

g(0) for z ∈ D.

Combining this with (11) we have∣∣∣∣ 1

g(0)
− 2 ln |z|zg

′(z)

g(z)
− 1

∣∣∣∣ ≤ 1.

But 1
g(0) − 1 = eiφ for some φ ∈ R. Therefore the last inequality may be

written in the following form∣∣∣∣eiφ − 2 ln |z|zg
′(z)

g(z)

∣∣∣∣ ≤ 1.

This inequality can be true if and only if g(z) = g(0) for z ∈ D. Therefore
zf ′(z)
f(z) = 1 in D or f(z) ≡ z. Thus Theorem 4 is true in the considered case.

Now we assume that Re g(0) > 1
2 and define the following family of func-

tions
f(z, t) = f(ze−t) exp[2tg(ze−t)], z ∈ D, t ∈ ⟨0,∞).

If f(z, t) = a(t)z + . . . , then a(t) = et(2g(0)−1). Hence |a(t)| = et(2Re g(0)−1) and
|a(t)| → ∞. Moreover, f(z,t)

a(t) → z as t → ∞ local uniformly in D. Therefore

the family
{

f(z,t)
a(t)

}
is normal in D.
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Now by simple calculation we obtain

A(z, t) =
f ′
t(z, t)

zf ′
z(z, t)

= −1 + 2g(ze−t)

[
ze−t f

′(ze−t)

f(ze−t)
+ 2tze−tg′(ze−t)

]−1

.

Hence we obtain∣∣∣∣A(z, t) − 1

A(z, t) + 1

∣∣∣∣ =

∣∣∣∣ ze−tf ′(ze−t)

f(ze−t)g(ze−t)
+ 2t

ze−tg′(ze−t)

g(ze−t)
− 1

∣∣∣∣.
Taking ze−t = ζ in the last equality we obtain for |z| = 1 and t ≥ 0 the
following one ∣∣∣∣A(eiΘ, t) − 1

A(eiΘ, t) + 1

∣∣∣∣ =

∣∣∣∣ ζf ′(ζ)

f(ζ)g(ζ)
− 2 ln |ζ|ζg

′(ζ)

g(ζ)
− 1

∣∣∣∣.
Hence by (11) we obtain∣∣∣∣A(z, t) − 1

A(z, t) + 1

∣∣∣∣ ≤ 1 for z ∈ D, t ∈ ⟨0,∞).

From the assumption Re g(0) > 1
2 we deduce that

∣∣A(0,t)−1
A(0,t)+1

∣∣ =
∣∣1 − 1

g(0)

∣∣ < 1.

Then according to maximum principle we eventually obtain∣∣∣∣A(z, t) − 1

A(z, t) + 1

∣∣∣∣ < 1 for z ∈ D, t ∈ ⟨0,∞).

This inequality tells us that the chain f(z, t) satisfies the equation

∂f

∂t
= z

∂f

∂z
p(z, t)

with a function p(z, t) which is regular in D for each t ∈ ⟨0,∞) and has
positive real part there. It turns out from the above considerations that
f(z, t) satisfies all the assumptions of the famous lemma of Pommerenke
(Lemma 3, [4]). Hence f(z, t) is univalent in D for each t ∈ ⟨0,∞) by this
lemma and so is f(z) = f(z, 0). The proof of Theorem 4 has been completed.

It is easy to see that (10) implies the following equality

zf ′(z)

f(z)g(z)
= 1 − ω(z), where |ω(z)| ≤ 1, ω(z) ̸= 1 for z ∈ D.

Combining this with (11) we obtain the following, equivalent to Theorem 4,

Theorem 5. Let f(z) = z + . . . and ω(z) be regular in D with f ′(z) ̸= 0,
|ω(z)| ≤ 1 and ω(z) ̸= 1 there. If the following inequality

(12)

∣∣∣∣ω(z) + 2 ln |z|
(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zω′(z)

1 − ω(z)

) ∣∣∣∣ ≤ 1
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hold for z ∈ D, then f is �in D.

We come to the next section which contains concluding remarks.
6. It is worth emphasizing that all the considered limiting cases of The-

orem 1, excluding the last one, determined functions belonging to B(0, β).
Now we will prove that there exists a function f which satisfies the assump-
tions of Theorem 5 and such that f /∈ B(0, β) for any β ∈ R.

To prove this, first we consider a function f of the form

(13) f(z) = z exp

{∫ z

0

1

z

[
(1 − ω(z)) exp

(∫ z

0

φ(z)

z
dz

)
− 1

]
dz

}
,

where ω and φ are regular in D and such that ω(0) = φ(0) = 0, |ω(z)| < 1,
|φ(z)| < 1

2 for z ∈ D. The function f is univalent in D because it satisfies the
assumptions of Theorem 5. Essentially, from (13) we have

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zω′(z)

1 − ω(z)
= φ(z), z ∈ D.

Hence by Schwarz Lemma we obtain∣∣∣∣ω(z) + 2 ln |z|
(

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+

zω′(z)

1 − ω(z)

) ∣∣∣∣ = |ω(z) + 2 ln |z|φ(z)|

≤ |z| − |z| ln |z| ≤ 1 for z ∈ D.

Thus relation (12) is satisfied.
Let us remind that f ∈ B(0, β) satisfies the following inequality

L(f, β, r,Θ1, Θ2) > −π whenever Θ1 < Θ2 and r ∈ (0, 1), where

L(f, β, r,Θ1, Θ2)

=

∫ Θ2

Θ1

[
Re

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
− β Im

zf ′(z)

f(z)

]
dΘ, z = reiΘ.

Let now f be given by (13), where we assume additionally that φ and ω
have real Taylor’s coefficients. Then for each symmetric interval ⟨−Θ,Θ⟩,
we have

L(f, β, r,−Θ,Θ) =

∫ Θ

−Θ

Re

[
zω′(z)

1 − ω(z)
+ φ(z)

]
dΘ, z = reiΘ.

Now let φ(z) = − 1
2z, z ∈ D, and let ω be schlicht mapping of D onto the

simply connected domains bounded by the circle |z| = 1 and the circle whose
diameter is the segment ⟨a, 1⟩, 0 < a < 1 (a circular lune). Moreover, let
ω(−1) = −1, ω(0) = 0 and ω(1) = a. It is easy to see that L(f, β, r,−Θ,Θ) =
−π − sinΘ for |z| = 1, where Θ = Θ(a) ∈ (0, π). Thus we can find r ∈
(0, 1), and such that L(f, β, r,−Θ,Θ) < −π for |z| = r by obvious continuity
considerations. It follows that f /∈ B(0, β) for any β ∈ R.

Additionally, we inform that ω(z) = 1 + 1
Ha(z)

and Θ = Θ(a) = π 1−a
1+a , where

Ha(z) = −i
2π

1+a
1−a ln 1−zeiΘ(a)

1−ze−iΘ(a) maps univalently D onto a suitable vertical strip.
In the last proof this concrete representation of ω was not quite necessary.
Finally, let us observe that Theorem 5 implies the following
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Theorem 6. Let F (ζ) = ζ + b0 + b1ζ
−1 + . . . , F ′(ζ) ̸= 0, be regular in D0\{∞}

and let w(ζ), |w(ζ)| ≤ 1, w(ζ) ̸= 1, be regular in D0, where D0 = {ζ : |ζ| > 1}.
If the following inequality∣∣∣∣w(ζ) + 2 ln |ζ|

(
1 +

ζF ′′(ζ)

F ′(ζ)
− ζF ′(ζ)

F (ζ)
+

ζw′(ζ)

1 − w(ζ)

) ∣∣∣∣ ≤ 1

holds for ζ ∈ D0, then F is univalent in D0.

Essentially, let us put F (ζ) = 1
f(z) and w(ζ) = w

(
1
z

)
= ω(z), where z = 1

ζ .

Then f satisfies all the assumptions of Theorem 5, thus f is univalent in D.
Hence we obtain our assertion.
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Przypadki graniczne pewnego kryterium jednolistności

Streszczenie. Znane jest ([3]) naste
‘
puja

‘
ce kryterium jednolistności

Twierdzenie. Niech a ≥ 1
2 , s = α + βi, α > 0, β ∈ R = (−∞,∞) be

‘
da

‘ustalonymi liczbami i niech f(z) = z + . . . i g(z) be
‘
da

‘
funkcjami regularnymi

w D = {z : |z| < 1}. Jeżeli dla z ∈ D prawdziwe sa
‘

nierówności∣∣∣∣ zf ′(z)

f(z)g(z)
− as

α

∣∣∣∣ ≤ a|s|
α

i ∣∣∣∣|z| 2aα zf ′(z)

f(z)g(z)
+

(
1 − |z| 2aα

)[
zf ′(z)

f(z)
+ s

zg′(z)

g(z)

]
− as

α

∣∣∣∣ ≤ a|s|
α

,

to f jest jednolistna w D.

W artykule omówione sa
‘

przypadki graniczne wartości parametrów a, α
oraz β. Sa

‘
one interesuja

‘
ce, gdyż otrzymujemy dobrze znane klasy jedno-

listnych funkcji lub też nowe kryteria jednolistności.

Bronis lawów, 11–15 stycznia, 1993 r.


