MATERIAŁY XVIII KONFERENCJI SZKOLENIOWEJ Z GEOMETRII ANALITYCZNEJ I ALGEBRAICZNEJ ZESPOLONEJ

1997

Łódź

str. 33

DIAGRAMY NEWTONA KRZYWYCH ALGEBRAICZNYCH

M. Masternak (Kielce)

0. Wstęp

W teorii osobliwości ważną rolę pełni pojęcie diagramu Newtona. Metody z nim związane prowadzą do opisu struktury zbioru rozwiązań równania algebraicznego f(X,Y) = 0 oraz umożliwiają obliczanie niezmienników osobliwości. Szczególnie ważne w tym kontekście są wyniki uzyskane w latach siedemdziesiątych przez A.G.Kusznirenkę ([K₁],[K₂],[K₃]).

Celem tego artykułu jest przedstawienie wyników Kusznirenki w przypadku dwuwymiarowym. Większość podanych dowodów należy do autora. W oparciu o opis diagramu krzywej algebraicznej w terminach diagramów lokalnych ujęty w Lemacie Podstawowym podajemy dowody oszacowań globalnych przez wyprowadzenie ich z odpowiednich oszacowań lokalnych. Rozwinięta technika ma dalsze zastosowania do osobliwości krzywych algebraicznych, które przedstawimy w innym miejscu.

1. DIAGRAMY NEWTONA I LOKALNE TWIERDZENIA KUSZNIRENKI

Niech $f = f(X,Y) = \sum c_{\alpha\beta} X^{\alpha} Y^{\beta} \in \mathbb{C}[X,Y]$ będzie wielomianem dodatniego stopnia deg f = n > 0. Jego częścią wiodącą $f^+(X,Y)$ nazywamy sumę wszystkich jednomianów postaci $c_{\alpha\beta} X^{\alpha} Y^{\beta}$ gdzie $\alpha + \beta = n$. Wielomian f nazywamy dogodnym 33

jeśli $c_{p0} \neq 0$ oraz $c_{0q} \neq 0$ dla pewnych p, q > 0.

Dla każdego wielomianu f rozważamy jego nośnik supp $f = \{(\alpha, \beta) \in \mathbb{Z}^2_+ : c_{\alpha\beta} \neq 0\}$. Definiujemy $\Delta(f) = \operatorname{convex}(\operatorname{supp} f)$ oraz $\Delta_{\infty}(f) = \operatorname{convex}(\{(0, 0)\}) \cup \operatorname{supp} f)$ (przez convex danego zbioru rozumiemy jego otoczkę wypukłą na płaszczyźnie \mathbb{R}^2). Wielokąty $\Delta(f)$ i $\Delta_{\infty}(f)$ nazywamy odpowiednio diagramem Newtona i diagramem Newtona w nieskończoności wielomianu f. Dodatkowo rozważamy jeszcze diagram Newtona wielomianu f w zerze $\Delta_0(f) \stackrel{\text{def}}{=} \operatorname{domknięcie} \Delta_{\infty}(f) \setminus \Delta(f)$.

Załóżmy, że f jest dogodny. Jeżeli p, q > 0 są najmniejszymi liczbami całkowitymi takimi, że $(p, 0), (0, q) \in \text{supp } f$ to $\Delta_0(f)$ jest wielokątem ograniczonym odcinkami łączącymi (0, 0) z (p, 0) oraz (0, 0) z (0, q) oraz odcinkami brzegowymi diagramu $\Delta(f)$ oddzielającymi go od początku układu (por. rys. 1).

Oczywiście $\Delta_{\infty}(f) = \Delta_0(f) \cup \Delta(f)$. Jeżeli $(0,0) \in \text{supp } f$ to $\Delta_{\infty}(f) = \Delta(f)$ i $\Delta_0(f) = \emptyset$. Przez $\partial \Delta_0(f)$ (odp. $\partial \Delta_{\infty}(f)$) oznaczamy zbiór odcinków brzegowych wielokąta $\Delta_0(f)$ (odp. $\Delta_{\infty}(f)$) nie zawartych w osiach.

Dla dowolnego odcinka S brzegu wielokąta $\Delta(f)$ definiujemy część główną f na S

$$\operatorname{in}(f,S)(X,Y) \stackrel{\text{def}}{=} \sum_{(\alpha,\beta)\in S} c_{\alpha\beta} X^{\alpha} Y^{\beta}.$$

W twierdzeniach o diagramach Newtona ważną rolę pełnią różne wersje pojęcia niedegeneracji.

Niech f(X,Y), g(X,Y) będzie parą wielomianów i niech S, T będą dowolnymi odcinkami brzegowymi diagramów $\Delta(f)$ i $\Delta(g)$. Parę (f,g) nazywamy niezdegenerowaną względem pary (S,T) jeżeli spełniony jest jeden z warunków

(i) S nie jest równoległy do T,

- (ii) S i T są równoległe ale diagramy $\Delta(f)$ i $\Delta(g)$ leżą po różnych stronach odpowiednio odcinków S i T.
- (iii) S i T są równoległe i diagramy $\Delta(f)$ i $\Delta(g)$ leżą po tych samych stronach odpowiednio odcinków S i T, ale układ $\operatorname{in}(f, S)(X, Y) = \operatorname{in}(g, T)(X, Y) = 0$ nie ma rozwiązań w $\mathbb{C}^* \times \mathbb{C}^*$ gdzie $\mathbb{C}^* = \mathbb{C} \setminus \{0\}.$

Parę (f,g) nazywamy niezdegenerowaną w zerze (w nieskończoności) jeżeli (f,g) jest niezdegenerowana względem (S,T) dla dowolnych $S \in \partial \Delta_0(f)$ i $T \in \partial \Delta_0(g)$ $(S \in \partial \Delta_{\infty}(f)$ i $T \in \partial \Delta_{\infty}(g))$.

Uwaga. W przypadku gdy wielomiany f i g mają ten sam wspólny diagram $\Delta = \Delta(f) = \Delta(g)$ (wtedy $\Delta_0 = \Delta_0(f) = \Delta_0(g)$ i $\Delta_\infty = \Delta_\infty(f) = \Delta_\infty(g)$) to niedegeneracja pary (f,g) w zerze (w nieskończoności) oznacza, że dla każdego odcinka $S \in \partial \Delta_0$ ($S \in \partial \Delta_\infty$) układ in(f,S)(X,Y) = in(g,S)(X,Y) = 0 nie ma rozwiązań w $\mathbb{C}^* \times \mathbb{C}^*$.

Podobnie jak dla pary wprowadzamy również pojęcie niedegeneracji dla jednego wielomianu. Niech $f(X,Y) \in \mathbb{C}[X,Y]$ i niech S będzie odcinkiem brzegowym wielokąta $\Delta(f)$. Mówimy, że wielomian f jest niezdegenerowany względem odcinka S jeżeli układ równań

$$\frac{\partial}{\partial X}$$
 in $(f, S)(X, Y) = \frac{\partial}{\partial Y}$ in $(f, S)(X, Y) = 0$

nie ma rozwiązań w $\mathbb{C}^* \times \mathbb{C}^*$.

Wielomian f nazywamy niezdegenerowanym w zerze (w nieskończoności) jeżeli f jest niezdegenerowany względem każdego odcinka $S \in \partial \Delta_0(f)$ ($S \in \partial \Delta_\infty(f)$).

Jeżeli $f(X,Y), g(X,Y) \in \mathbb{C}[X,Y]$ to przez $(f,g)_P$ oznaczamy krotność przecięcia krzywych f(X,Y) = 0 i g(X,Y) = 0 w punkcie $P \in \mathbb{C}^2$. Definicję krotności przyjmujemy za [F]. Nasze rozważania oprzemy na następującym twierdzeniu:

Twierdzenie 1.1 (Kusznirenko, zob. [A], [K₁], [P]). Niech f(X,Y), $g(X,Y) \in \mathbb{C}[X,Y]$ będą wielomianami dogodnymi takimi, że $\Delta_0(f) = \Delta_0(g) = \Delta_0$. Wtedy $(f,g)_0 \geq 2 \operatorname{pole} \Delta_0$. Równość zachodzi gdy para (f,g) jest niezdegenerowana w zerze.

Jako zastosowanie powyższego udowodnimy

Twierdzenie 1.2 (Kusznirenko, zob. [K₂], [K₃]). Niech $f(X, Y) \in \mathbb{C}[X, Y]$ będzie wielomianem dogodnym i niech

$$\mu_0(f) = \left(\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y}\right)_0$$

będzie jego lokalną liczbą Milnora. Wtedy

$$\mu_0(f) \ge 2 \operatorname{pole} \Delta_0(f) - \operatorname{ord} f(X, 0) - \operatorname{ord} f(0, Y) + 1.$$

Równość zachodzi gdy f jest niezdegenerowany w zerze.

Podane oszacowanie dla liczby Milnora otrzymujemy z oszacowania 1.1 dla krotnosci przecięcia. Decydującą rolę pełni podany niżej lemat. **Lemat 1.3.** Niech $f(X,Y) \in \mathbb{C}[X,Y]$ będzie wielomianem dodatniego stopnia bez stałego wyrazu. Wtedy

(1) Dla prawie wszystkich $(\mu, \nu) \in \mathbb{C}^2$

$$\operatorname{supp}\left(\mu X \frac{\partial f}{\partial X} + \nu Y \frac{\partial f}{\partial Y}\right) = \operatorname{supp} f.$$

(2) Jeżeli f jest dogodny i niezdegenerowany w zerze (w nieskończoności) to dla prawie wszystkich $(\mu, \nu), (\xi, \eta) \in \mathbb{C}^2$ para

$$\left(\mu X \frac{\partial f}{\partial X} + \nu Y \frac{\partial f}{\partial Y}, \, \xi X \frac{\partial f}{\partial X} + \eta Y \frac{\partial f}{\partial Y}\right)$$

jest niezdegenerowana w zerze (w nieskończoności).

Dowód lematu. (Ad. 1). Niech $f(X,Y) = \sum_{(\alpha,\beta)\in N} c_{\alpha\beta} X^{\alpha} Y^{\beta}$ gdzie $N = \operatorname{supp} f$. Ustalmy $(\mu,\nu) \in \mathbb{C}^2$ i niech

$$f_1(X,Y) = \mu X \frac{\partial f}{\partial X}(X,Y) + \nu Y \frac{\partial f}{\partial Y}(X,Y).$$

Nietrudno sprawdzić, że $f_1(X,Y) = \sum_{(\alpha,\beta)\in N} (\mu\alpha + \nu\beta) c_{\alpha\beta} X^{\alpha} Y^{\beta}$. Zatem jeżeli $\mu\alpha + \nu\beta \neq 0$ dla wszystkich $(\alpha,\beta) \in N$ to supp $f_1 = \text{supp } f$.

(Ad. 2). Ustalmy $(\mu,\nu),\,(\xi,\eta)\in\mathbb{C}^2$ dla których zachodzi (1). Załóżmy dodatkowo, że $\mu\eta-\nu\xi\neq0.$ Niech

$$f_1(X,Y) = \mu X \frac{\partial f}{\partial X}(X,Y) + \nu Y \frac{\partial f}{\partial Y}(X,Y)$$

oraz

$$f_2(X,Y) = \xi X \frac{\partial f}{\partial X}(X,Y) + \eta Y \frac{\partial f}{\partial Y}(X,Y).$$

Oczywiście $\Delta(f_1)=\Delta(f_2)=\Delta(f).$ Niech S będzie odcinkiem brzegowym wielokąta $\Delta(f).$ Wystarczy sprawdzić, że jeżeli układ

$$\frac{\partial}{\partial X}\operatorname{in}(f,S)(X,Y) = \frac{\partial}{\partial Y}\operatorname{in}(f,S)(X,Y) = 0$$

nie ma rozwiązań w $\mathbb{C}^*\times\mathbb{C}^*$ to również układ

$$in(f_1, S)(X, Y) = in(f_2, S)(X, Y) = 0$$

nie ma rozwiązań w $\mathbb{C}^*\times\mathbb{C}^*.$ Ale to wynika wprost z równości:

$$in(f_1, S)(X, Y) = \mu X \frac{\partial}{\partial X} in(f, S)(X, Y) + \nu Y \frac{\partial}{\partial Y} in(f, S)(X, Y)$$

$$in(f_2, S)(X, Y) = \xi X \frac{\partial}{\partial X} in(f, S)(X, Y) + \eta Y \frac{\partial}{\partial Y} in(f, S)(X, Y)$$

oraz z warunku $\mu\eta - \nu\xi \neq 0$.

Dowód twierdzenia 1.2. Ustalmy (μ, ν) , $(\xi, \eta) \in \mathbb{C}^2$ dla których spełnione są warunki (1) i (2) lematu 1.3 Podobnie jak w dowodzie lematu określamy wielomiany $f_1(X, Y)$ i $f_2(X, Y)$. Spełniają one założenia twierdzenia 1.1, bowiem $\Delta_0(f_1) = \Delta_0(f_2) = \Delta_0(f)$ i f jest dogodny. Mamy więc oszacowanie $(f_1, f_2)_0 \ge 2$ pole $\Delta_0(f)$. Jeżeli f jest niezdegenerowany w zerze to para (f_1, f_2) jest niezdegenerowana w zerze i wtedy $(f_1, f_2)_0 = 2$ pole $\Delta(f)$.

Zauważmy, że jeżeli pary (μ, ν) , (ξ, η) są liniowo niezależne to pary wielomianów $(X\partial f/\partial X, Y\partial f/\partial Y)$ oraz (f_1, f_2) generują ten sam ideał w $\mathbb{C}[[X, Y]]$. Wobec tego

$$\left(X\frac{\partial f}{\partial X}, Y\frac{\partial f}{\partial Y}\right)_0 = (f_1, f_2)_0.$$

Zatem

$$\left(X\frac{\partial f}{\partial X}, Y\frac{\partial f}{\partial Y}\right)_0 \ge 2 \operatorname{pole} \Delta_0(f)$$

Ale

$$\begin{split} \left(X \frac{\partial f}{\partial X}, Y \frac{\partial f}{\partial Y} \right)_0 &= \left(\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y} \right)_0 + \left(\frac{\partial f}{\partial X}, Y \right)_0 + \left(X, \frac{\partial f}{\partial Y} \right)_0 + (X, Y)_0 \\ &= \mu_0(f) + \operatorname{ord} f(X, 0) + \operatorname{ord} f(0, Y) - 1. \end{split}$$

Stąd $\mu_0(f) \ge 2$ pole $\Delta_0(f) - \operatorname{ord} f(X, 0) - \operatorname{ord} f(0, Y) + 1$ i jeżeli f jest niezdegenerowany w zerze to zachodzi równość.

2. DIAGRAMY NEWTONA W AFINICZNYCH UKŁADACH WSPÓŁRZĘDNYCH

Jeżeli $U = (\vec{u}; \vec{e_1}, \vec{e_2})$ jest afinicznym reperem płaszczyzny \mathbb{R}^2 (tzn. $\vec{u}, \vec{e_1}, \vec{e_2} \in \mathbb{R}^2$ i $\vec{e_1}, \vec{e_2}$ są \mathbb{R} -niezależne) to definiujemy nośnik wielomianu $f = f(X, Y) \in \mathbb{C}[X, Y]$ w układzie U: supp^U $f \stackrel{\text{def}}{=} \{\vec{u} + \alpha \vec{e_1} + \beta \vec{e_2} : (\alpha, \beta) \in \text{supp } f\}$ oraz diagram Newtona wielomianu f(X, Y) w układzie U: $\Delta^U(f) \stackrel{\text{def}}{=} \text{convex}(\text{supp}^U f)$. Podobnie jak w przypadku standardowym określamy $\Delta^U_{\infty}(f) \stackrel{\text{def}}{=} \text{convex}(\{\vec{u}\} \cup \text{supp}^U f)$ oraz $\Delta^U_0(f) \stackrel{\text{def}}{=} \text{domknięcie } \Delta^U_{\infty}(f) \setminus \Delta^U(f)$ (zob, rys. 2).

 $\begin{array}{l} \Delta_0^U(f) \stackrel{\text{def}}{=} \operatorname{domknięcie} \Delta_{\infty}^U(f) \setminus \Delta^U(f) \text{ (zob, rys. 2).} \\ \operatorname{Oczywiście} \Delta_{\infty}^U(f) = \Delta_0^U(f) \cup \Delta^U(f). \text{ Jeżeli } f(0,0) \neq 0 \text{ to } (0,0) \in \operatorname{supp} f \\ \operatorname{więc} \vec{u} \in \operatorname{supp}^U f \text{ i wtedy } \Delta_{\infty}^U(f) = \Delta^U(f). \text{ Analogicznie jak dla standardowego} \\ \operatorname{diagramu określamy zbiory odcinków } \partial \Delta_0^U(f) \text{ i } \partial \Delta_{\infty}^U(f). \text{ Jeżeli} \end{array}$

$$f(X,Y) = \sum_{(\alpha,\beta)\in \text{supp } f} c_{\alpha\beta} X^{\alpha} Y^{\beta} \in \mathbb{C}[X,Y]$$

i S jest dowolnym odcinkiem brzegowym wielokąta $\Delta^U(f)$ to definiujemy in $^U(f,S)(X,Y)$ część główną wielomianu f na S w układzie U jako sumę tych

jednomianów $c_{\alpha\beta}X^{\alpha}Y^{\beta}$ dla których $\vec{u} + \alpha \vec{e_1} + \beta \vec{e_2} \in S$. Wprowadzając oznaczenie $(\alpha,\beta)_U := \vec{u} + \alpha \vec{e_1} + \beta \vec{e_2}$ możemy napisać

$$\operatorname{in}^{U}(f,S)(X,Y) = \sum_{(\alpha,\beta)_{U} \in S} c_{\alpha\beta} X^{\alpha} Y^{\beta}.$$

Jeżeli $U = (\vec{0}; \vec{i}, \vec{j})$ gdzie $\vec{i} = (1, 0), \ \vec{j} = (0, 1)$ to wprowadzone wyżej pojęcia odpowiadają standardowej konstrukcji diagramu Newtona z poprzedniego paragrafu, tzn. $\Delta^U(f) = \Delta(f), \ \Delta^U_{\infty}(f) = \Delta_{\infty}(f)$, etc.

W poprzednim paragrafie podaliśmy również definicje niedegeneracji wielomianu (pary wielomianów) w zerze i w nieskończoności ściśle związane ze standardowym diagramem Newtona. Nietrudno zauważyć, że odpowiedniki tych definicji sformułowane dla diagramu Newtona w układzie $U = (\vec{u}; \vec{e_1}, \vec{e_2})$ są im reównoważne. Wynika to z faktu, że diagram $\Delta^U(f)$ jest obrazem diagramu $\Delta(f)$ w przekształceniu afinicznym płaszczyzny: $\mathbb{R}^2 \ni (\alpha, \beta) \to (\alpha, \beta)_U = \vec{u} + \alpha \vec{e_1} + \beta \vec{e_2} \in \mathbb{R}^2$.

Rozważanie diagramu Newtona względem danego układu współrzędnych okazuje się użyteczne gdy chcemy porównać diagramy Newtona różnych wielomianów w naturalny sposób związanych z danym wielomianem f. Niech więc $n = \deg f > 0$ i rozważmy ujednorodnienie F(X, Y, Z) wielomianu f(X, Y) dane wzorem $F(X, Y, Z) = Z^n f(X/Z, Y/Z)$. Jak wiadomo krzywa rzutowa F(X, Y, Z) = 0 jest domknięciem rzutowym krzywej afinicznej f(X, Y) = 0 i naturalne jest rozważanie krzywych afinicznych F(1, Y, Z) = 0 oraz F(X, 1, Z) = 0. Jeżeli f(X, Y) nie jest podzielny przez X ani przez Y to ujednorodnieniem wielomianów F(1, Y, Z) oraz F(X, 1, Z) jest również wielomian F(X, Y, Z).

Lemat Podstawowy. Niech $U = (\vec{0}; \vec{\imath}, \vec{\jmath}), V = (n\vec{\imath}; \vec{\jmath} - \vec{\imath}, -\vec{\imath}), W = (n\vec{\jmath}; \vec{\imath} - \vec{\jmath}, -\vec{\jmath}).$ Wtedy

(1) $\operatorname{supp}^{U} F(X, Y, 1) = \operatorname{supp}^{V} F(1, Y, Z) = \operatorname{supp}^{W} F(X, 1, Z)$

(2) jeżeli S jest odcinkiem brzegowym wielokąta $\Delta(f)$ to S jest odcinkiem brzegowym wielokątów $\Delta^V(F(1,Y,Z))$ i $\Delta^W(F(X,1,Z))$ i zachodzą równości: $\operatorname{in}^V(F(1,Y,Z),S)(Y,Z) = Z^n \operatorname{in}(f,S)(1/Z,Y/Z),$ $\operatorname{in}^W(F(X,1,Z),S)(X,Z) = Z^n \operatorname{in}(f,S)(X/Z,1/Z).$

Dowód. (Ad. 1). Wykażemy pierwszą równość. Oznaczam
y $N=\mathrm{supp}\,f.$ Zatem jeśli

$$f(X,Y) = \sum_{(\alpha,\beta)\in N} c_{\alpha\beta} X^{\alpha} Y^{\beta}$$

 to

$$F(X,Y,Z) = \sum_{(\alpha,\beta)\in N} c_{\alpha\beta} X^{\alpha} Y^{\beta} Z^{n-\alpha-\beta}$$

oraz

$$F(1, Y, Z) = \sum_{(n-\beta-\gamma, \beta) \in N} c_{n-\beta-\gamma, \beta} Y^{\beta} Z^{\gamma}$$

i mamy

$$supp^{V} F(1, Y, Z) =$$

$$= \{\beta(\vec{j} - \vec{i}) + \gamma(-\vec{i}) + n\vec{i} : (\beta, \gamma) \in supp F(1, Y, Z)\} =$$

$$= \{\beta(\vec{j} - \vec{i}) + \gamma(-\vec{i}) + n\vec{i} : \gamma = n - \alpha - \beta i (\alpha, \beta) \in N\} =$$

$$= \{(n - \beta - \gamma)\vec{i} + \beta\vec{j} : \gamma = n - \alpha - \beta i (\alpha, \beta) \in N\} =$$

$$= \{\alpha\vec{i} + \beta\vec{j} : (\alpha, \beta) \in N\} = N = supp^{U} F(X, Y, 1).$$

Dowód równości supp^U $F(X, Y, 1) = \operatorname{supp}^W F(X, 1, Z)$ przebiega podobnie. (Ad. 2). Niech S będzie odcinkiem brzegowym wielokąta $\Delta(f)$. Z udowodnionej równości wynika, że S jest również odcinkiem brzegowym wielokąta $\Delta^V(F(1, Y, Z))$. Stosujemy notację z dowodu punktu (1).

$$\operatorname{in}^{V}(F(1,Y,Z),S)(Y,Z) = \sum_{(\beta,\gamma)_{V} \in S} a_{\beta\gamma} Y^{\beta} Z^{\gamma}$$

gdzie $a_{\beta\gamma} = c_{n-\beta-\gamma,\beta}$.

$$\operatorname{in}^{V} \left(F(1, Y, Z), S \right)(Y, Z) = Z^{n} \sum_{(n-\beta-\gamma,\beta)\in S} a_{\beta\gamma} Y^{\beta} Z^{\gamma-n} =$$

$$= Z^{n} \sum_{(\alpha,\beta)\in S} a_{\beta,n-\alpha-\beta} Y^{\beta} Z^{-\alpha-\beta} = Z^{n} \sum_{(\alpha,\beta)\in S} c_{\alpha,\beta} \left(\frac{1}{Z}\right)^{\alpha} \left(\frac{Y}{Z}\right)^{\beta} =$$

$$= Z^{n} \operatorname{in}(f, S) \left(\frac{1}{Z}, \frac{Y}{Z}\right).$$

Dowód drugiej równości przebiega podobnie.

Wprost z definicji diagramu i udowodnionego lematu otrzymujemy

Wniosek 2.1.

$$\Delta(f) = \Delta^V \big(F(1, Y, Z) \big) = \Delta^W \big(F(X, 1, Z) \big).$$

W dalszej części naszych rozważań wykorzystamy proste obserwacje geometryczne wynikające z przedstawionych wyżej faktów. Odnotujmy je w postaci uwagi (zob. rys. 3).

Uwaga 2.2. Jeżeli wielomian f jest dogodny i deg f = n to

- (1) pole $\Delta_{\infty}(f)$ + pole $\Delta_{0}^{V}(F(1,Y,Z))$ + pole $\Delta_{0}^{W}(F(X,1,Z)) = n^{2}/2$ (2) $\partial \Delta_{0}^{V}(F(1,Y,Z)) \subset \partial \Delta_{\infty}(f)$ oraz $\partial \Delta_{0}^{W}(F(X,1,Z)) \subset \partial \Delta_{\infty}(f)$.

3. Globalne twierdzenia Kusznirenki

Podamy teraz globalne odpowiedniki twierdzeń 1.1 i 1.2 przedstawionych w pierwszej części artykułu.

Twierdzenie 3.1 (Kusznirenko). Niech $f(X,Y), g(X,Y) \in \mathbb{C}[X,Y]$ będą względnie pierwszymi i dogodnymi wielomianami o identycznych diagramach Newtona (tzn. $\Delta = \Delta(f) = \Delta(g)$, wówczas $\Delta_{\infty} = \Delta_{\infty}(f) = \Delta_{\infty}(g)$). Wtedy

$$\sum_{P \in \mathbb{C}^2} (f, g)_P \le 2 \operatorname{pole} \Delta_{\infty}.$$

Równość zachodzi jeżeli para (f,g) jest niezdegenerowana w nieskończoności.

40

Twierdzenie 3.2 (Kusznirenko). Niech $f(X,Y) \in \mathbb{C}[X,Y]$ będzie wielomianem dogodnym i niech $\mu(f) = \sum_{P \in \mathbb{C}^2} (\frac{\partial f}{\partial X}, \frac{\partial f}{\partial Y})_P$ będzie jego globalną liczbą Milnora. Zakładamy, że $\mu(f) < +\infty$. Wtedy

$$\mu(f) \le 2 \operatorname{pole} \Delta_{\infty}(f) - \deg f(X, 0) - \deg f(0, Y) + 1.$$

Równość zachodzi jeżeli f jest niezdegenerowany w nieskończoności.

Poniżej podamy dowód twierdzenia 3.1 w oparciu o jego lokalną wersję (twierdzenie 1.1) z wykorzystaniem obserwacji przedstawionych w poprzednim paragrafie. Natomiast dowód twierdzenia 3.2 przebiega analogicznie jak dowód twierdzenia 1.2 Zamiast twierdzenia 1.1 wykorzystujemy w nim twierdzenie 3.1 i stosowną część lematu 1.3

Przed przystąpieniem do dowodu twierdzenia 3.1 sformułujemy dwa lematy. Pierwszy z nich jest natychmiastowym wnioskiem z klasycznego twierdzenia Bezouta dla krzywych rzutowych.

Niech $f(X,Y), g(X,Y) \in \mathbb{C}[X,Y]$ będą względnie pierwszymi wielomianami odpowiednio stopni m > 0, n > 0. Niech F(X,Y,Z) będzie ujednorodnieniem f(X,Y) i podobnie niech G(X,Y,Z) będzie ujednorodnieniem g(X,Y).

Lemat 3.3 ("Nierówność Bezouta"). Przy wprowadzonych oznaczeniach i założeniach

$$\sum_{P \in \mathbb{C}^2} (f, g)_P \le mn - \left(F(1, Y, Z), G(1, Y, Z) \right)_0 - \left(F(X, 1, Z), G(X, 1, Z) \right)_0$$

Lemat 3.4. Jeżeli para wielomianów dogodnych (f,g) o identycznych diagramach Newtona jest niezdegenerowana w nieskończoności to

- (1) Krzywe rzutowe F(X, Y, Z) = 0 i G(X, Y, Z) = 0 przecinają się na prostej w nieskończoności co najwyżej w punktach (1:0:0) i (0:1:0).
- (2) Pary (F(1, Y, Z), G(1, Y, Z)) i (F(X, 1, Z), G(X, 1, Z)) sq niezdegenerowane w zerze.

Dowód. (Ad. 1). Z niedegeneracji pary (f,g) w nieskończoności wynika, że części wiodące $f^+(X,Y)$ i $g^+(X,Y)$ odpowiednio wielomianów f(X,Y) i g(X,Y) nie mają wspólnych zer w $\mathbb{C}^* \times \mathbb{C}^*$ Ale $F(X,Y,Z) = f^+(X,Y) + Z\widetilde{F}(X,Y,Z)$ oraz $G(X,Y,Z) = g^+(X,Y) + Z\widetilde{G}(X,Y,Z)$ dla pewnych $\widetilde{F}(X,Y,Z)$, $\widetilde{G}(X,Y,Z) \in \mathbb{C}[X,Y,Z]$.

Zatem jeżeli $(a : b : 0) \in \mathbb{P}^2$ jest punktem wspólnym krzywych rzutowych F(X, Y, Z) = 0 i G(X, Y, Z) = 0 to (a : b : 0) = (1 : 0 : 0) lub (a : b : 0) = (0 : 1 : 0). (Ad. 2). Udowodnimy niedegenerację w zerze pary (F(1, Y, Z), G(1, Y, Z)). Dla drugiej pary rozumowanie jest analogiczne.

Niech $\Delta = \Delta(f) = \Delta(g)$ i deg $f = \deg g = n$. Natychniastowym wnioskiem z Lematu Podstawowego są równości $\Delta = \Delta^V(F(1,Y,Z))$ i $\Delta = \Delta^V(G(1,Y,Z))$

gdzie $V = (n\vec{\imath}; \vec{j}-\vec{\imath}, -\vec{\imath})$ (por. Wniosek 2.1). Stąd $\Delta_0^V(F(1, Y, Z)) = \Delta_0^V(G(1, Y, Z))$. Ustalmy teraz odcinek $S \in \partial \Delta_0^V(F(1, Y, Z)) = \partial \Delta_0^V(G(1, Y, Z)) \subset \partial \Delta_{\infty}(f) = \partial \Delta_{\infty}(g)$ (zob. Uwaga 2.2). Dla dowodu niedegeneracji pary (F(1, Y, Z), G(1, Y, Z)) w zerze wystarczy sprawdzić, że układ

(*)
$$\operatorname{in}^{V}(F(1,Y,Z),S)(Y,Z) = \operatorname{in}^{V}(G(1,Y,Z),S)(Y,Z) = 0$$

nie ma rozwiązań w $\mathbb{C}^*\times\mathbb{C}^*.$

Przypuśćmy nie wprost, że punkt $(y_0, z_0) \in \mathbb{C}^* \times \mathbb{C}^*$ jest rozwiązaniem układu (*). Stosując Lemat Podstawowy (p.(2)) stwierdzamy, że wtedy

$$z_0^n \operatorname{in}(f, S)\left(\frac{1}{z_0}, \frac{y_0}{z_0}\right) = z_0^n \operatorname{in}(g, S)\left(\frac{1}{z_0}, \frac{y_0}{z_0}\right) = 0$$

a to oznacza, że punkt $(1/z_0, y_0/z_0) \in \mathbb{C}^* \times \mathbb{C}^*$ jest rozwiązaniem układu in(f, S)(X, Y) = in(g, S)(X, Y) = 0, co wobec niedegeneracji pary (f, g) w nieskończoności prowadzi do sprzeczności.

Dowód twierdzenia 3.1. Jak już zauważyliśmy w dowodzie lematu 3.4 z założenia równości diagramów Newtona wielomianów f i g wynika równość diagramów Newtona w zerze w układzie $V = (n\vec{i}; \vec{j} - \vec{i}, -\vec{i})$ $(n = \deg f = \deg g)$ wielomianów F(1, Y, Z) i G(1, Y, Z).

Podobnie stwierdzamy, że identyczne są diagramy Newtona w zerze w układzie $W = (n\vec{j}; \vec{i} - \vec{j}, -\vec{j})$ wielomianów F(X, 1, Z) i G(X, 1, Z). Ponadto mają miejsce analogiczne równości w odniesieniu do "standardowych" diagramów Newtona w zerze wielomianów F(1, Y, Z) i G(1, Y, Z) oraz F(X, 1, Z) i G(X, 1, Z). Oznaczamy

$$\Delta_I = \Delta_0^V(F(1, Y, Z)) = \Delta_0^V(G(1, Y, Z))$$

oraz

$$\Delta_{II} = \Delta_0^W(F(X, 1, Z)) = \Delta_0^W(G(X, 1, Z))$$

Twierdzimy, że zachodzą następujące oszacowania:

(1)
$$(F(1, Y, Z), G(1, Y, Z))_0 \ge 2 \operatorname{pole} \Delta_I (F(X, 1, Z), G(X, 1, Z))_0 \ge 2 \operatorname{pole} \Delta_{II}$$

Ograniczymy się do uzasadnienia tylko pierwszej nierówności. Niech $D_0 = \Delta_0(F(1, Y, Z)) = \Delta_0(G(1, Y, Z))$. Wielokąt Δ_I jest obrazem wielokąta D_0 w przekształceniu ekwiafinicznym: $\mathbb{R}^2 \ni (\alpha, \beta) \to (\beta, n - \alpha - \beta) \in \mathbb{R}^2$. Stąd wynika, że pola wielokątów D_0 i Δ_I są równe. Załóżmy teraz, że wielomiany F(1, Y, Z), G(1, Y, Z) są dogodne. Wtedy dowodzona nierówność wynika wprost z twierdzenia 1.1 i równości pól wielokątów D_0 i Δ_I . W przypadku gdy F(1, Y, Z) i G(1, Y, Z) nie są dogodne to wobec dogodności f i g stwierdzamy, że wówczas wielomiany F(1, Y, Z) i G(1, Y, Z) i G(1, Y, Z) mają niezerowe wyrazy wolne. Wtedy $\Delta_I = \emptyset$ i $(F(1, Y, Z), G(1, Y, Z))_0 = 0$ i dowodzona nierówność jest trywialnie spełniona.

Wobec Lematu 3.3 z udowodnionych nierówności wynika

(2)
$$\sum_{P \in \mathbb{C}^2} (f, g)_P \le n^2 - 2 \operatorname{pole} \Delta_I - 2 \operatorname{pole} \Delta_{II}$$

i stąd, ponieważ suma pół wielokątów
 $\Delta_\infty,\,\Delta_I$ i Δ_{II} wynosi $n^2/2$ (por. Uwaga 2.2), otrzy
mujemy

(3)
$$\sum_{P \in \mathbb{C}^2} (f, g)_P \le 2 \text{ pole } \Delta_{\infty}$$

Jeżeli para (f, g) jest niezdegenerowana w nieskończoności, to na mocy lematu 3.4 (p.(2)) i twierdzenia 1.1 stwierdzamy, że nierówności (1) można zastąpić równościami. Ponadto zauważmy, że wtedy "Nierówność Bezouta" staje się równością (lemat 3.4, p.(1)). Stąd wynika, że jeżeli para (f, g) jest niezdegenerowana w nieskończoności, to w (2) więc i w (3) mamy równość.

Przedstawione powyżej rozumowanie pozwla wysnuć następujący wniosek:

Przy założeniach twierdzenia 3.1 i wprowadzonych oznaczeniach: suma krotności przecięcia w punktach leżących na prostej w nieskończoności $\{(x : y : z) \in \mathbb{P}^2 : z = 0\}$ domknięć rzutowych krzywych afinicznych f(X,Y) = 0, g(X,Y) = 0 jest większa lub równa od 2(pole Δ_I +pole Δ_{II}). Jeżeli para (f,g) jest niezdegenerowana w nieskończości to zachodzi równość.

SPIS LITERATURY

- [A] L. A. Ajzenberg, A. P. Južakov, Integral'nye predstavlenija i vyčety v mnogomernom kompleksnom analize (1991), Izdat. Nauka, Sibirskoe Otdelenie, Novosibirsk.
- [B] o D. N. Bernštejn,, Čislo kornej sistemy uravnenij, Funkcional'nyj analiz i ego priloženija, 9(3) (1975)), 1–4.
- [F] W. Fulton, Algebraic curves, W. A. Benjamin, Inc., 1969.
- [K1] A. G. Kušnirenko, Mnogogrannik N'jutona i čislo rešenij sistemy k urovnienij s k nieizvestnymi, UMN XXX 2 (1975), 266–267.
- [K2] A. G. Kušnirenko, Mnogogrannik N'jutona i čisla Milnora, Funkcional'nyj analiz i ego priloženija, 9(1) (1975), 74–75.
- [K3] A. G. Kouchnirenko, Polyédres de Newton et nombers de Milnor, Inv. Math. 32(1) (1976), 1–32.
- [P] A. Płoski, Newton polygons and the Lojasiewicz exponent of a holomorphic mapping of C², Ann. Polon. Math. I (1990), 275–281.

THE NEWTON DIAGRAMS OF PLANE ALGEBRAIC CURVES.

Summary. We give the description of the Newton diagram of a plane curve in terms of the local diagrams. As application we get the elementary proofs of Kouchnirenko's theorems on intersection multiplicities and the Milnor number. Bronisławów, 13–17 stycznia, 1997 r.