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Flex Points

Points in which the tangent line intersect
the curve with multiplicity 3.

If f defines the curve, flex points are
common zeroes of f and H(f ).

In case f = x3 + y 3 + z3 we have
H(f ) = xyz (up to a scalar).
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Flex points on Fermat cubic

Explicit coordinates of flex points on Fermat cubic:

P1 = [1 : −1 : 0], P4 = [1 : −ε : 0], P7 = [1 : −ε2 : 0],
P2 = [1 : 0 : −1], P5 = [1 : 0 : −ε], P8 = [1 : 0 : −ε2],

P3 = [0 : 1 : −1], P6 = [0 : 1 : −ε], P9 = [0 : 1 : −ε2],

where ε ∈ C is a primitive root of unity of order 3.
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Sextactic Points

Points for which there exists an
irreducible hyperosculating conic
with a tangency order of at least 6
at the point.
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Sextactic points on Fermat cubic

Sextactic points on Fermat cubic are common zeroes of f = x3 + y 3 + z3 and

H2(f ) = (x3 − y 3)(y 3 − z3)(z3 − x3).

Explicit coordinates of some of sextactic points on Fermat cubic:

S1 = [−1
2εµ

2 : −1
2εµ

2 : 1], S5 = [ε : −εµ : 1],
S2 = [1 : (ε+ 1)µ : 1], S6 = [−µ : −ε− 1 : 1],
S3 = [(ε+ 1)µ : 1 : 1], S7 = [−1

2µ
2 : 1

2(ε+ 1)µ2 : 1],
S4 = [12(ε+ 1)µ2 : −1

2µ
2 : 1], S8 = [−ε− 1 : −µ : 1],

where µ = 3
√

2 and ε ∈ C is a primitive root of unity of order 3.

4



Sextactic points on Fermat cubic

Sextactic points on Fermat cubic are common zeroes of f = x3 + y 3 + z3 and

H2(f ) = (x3 − y 3)(y 3 − z3)(z3 − x3).

Explicit coordinates of some of sextactic points on Fermat cubic:

S1 = [−1
2εµ

2 : −1
2εµ

2 : 1], S5 = [ε : −εµ : 1],
S2 = [1 : (ε+ 1)µ : 1], S6 = [−µ : −ε− 1 : 1],
S3 = [(ε+ 1)µ : 1 : 1], S7 = [−1

2µ
2 : 1

2(ε+ 1)µ2 : 1],
S4 = [12(ε+ 1)µ2 : −1

2µ
2 : 1], S8 = [−ε− 1 : −µ : 1],

where µ = 3
√

2 and ε ∈ C is a primitive root of unity of order 3.

4



Type 9 Points

Type 9 points are points where an
irreducible cubic curve intersects C
with multiplicity 9.

Questions:
1. What are the coordinates of
type 9 points on Fermat cubic?
2. Is there a curve of degree 24
passing through all of those type 9
points?

5



Abel’s Theorem

Theorem

Let E be a smooth complex elliptic curve with distinguished point 0 embedded in the
complex projective plane. Then a divisor D =

∑
diPi on E is a (scheme theoretic)

intersection of E with another plane curve C of degree c if and only if
∑

di = 3c and∑
diPi = 0 in the group law on E .

Corollaries:

1. Sextactic points on an elliptic curve are 6-torsion points which are not 3-torsion
points.

2. Type 9 points on an elliptic curve are 9-torsion points which are not 3-torsion points.
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Division polynomials for y 2 = x3 + Ax + B

A sequence (ψn)n∈N of polynomials, defined as:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y ,

ψ3 = 3x4 + 6Ax2 + 12Bx − A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3),

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 for n ≥ 2,

ψ2n =
ψn

2y
(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1) for n > 2.
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Division polynomials for y 2 = x3 + Ax + B

Let E be an elliptic curve y 2 = x3 + Ax + B .

The roots of ψ2n+1 are the x-coordinates of the points of E [2n + 1] \ {O}, where
E [2n + 1] denotes the (2n + 1)-th torsion group of E .

The roots of
ψ2n

y
are the x-coordinates of the points of E [2n] \ E [2].
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Division polynomials for y 2 = x3 + Ax + B

Fermat cubic in Weierstrass form:

x3 + y 3 + z3 = 0 −→ y 2 = x3 − 432

[x : y : z ] −→
(
−12z
x + y

,
36(x − y)

x + y

)

Polynomial ψ9 splits in Q(α, β), where α = 3
√

3 and β is the primitive root of unity of
order 9.

Minimal polynomial of γ = α + β:

γ18 − 15γ15 + 177γ12 − 578γ9 + 6747γ6 + 642γ3 + 343 = 0.
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Type 9 points: complete intersection

Theorem.

The set of type 9 points on Fermat cubic is a complete intersection of curves
x3 + y 3 + z3 = 0 and H3(y , z) = 0, where

H3(y , z) = y 24 + 4y 21z3 − 17y 18z6 − 65y 15z9 − 89y 12z12

− 65y 9z15 − 17y 6z18 + 4y 3z21 + z24

= (y 9 + 6y 6z3 + 3y 3z6 − z9)(y 9 − 3y 6z3 − 6y 3z6 − z9)(y 6 + y 3z3 + z6).

H3(y , z) splits into 24 lines passing through [1 : 0 : 0] over Q(α, β).
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Coordinates of the first 12 type 9 points

P1 = [1 : β : β2], P2 = [1 : β2 : β4], P3 = [1 : β : β5]

P4 = [3 : αβ(β4 + 2β3 − β + 1) : −α2(β2 + β + 1)(β3 − β + 1)],

P5 = [3 : −αβ(2β4 + β3 + β + 2) : α2(β + 1)(β − 1)2],

P6 = [3 : αβ(β4 − β3 − β − 2) : −α2β2(β2 + β + 1)],

P7 = [3 : αβ(β − 1)(β3 + 2) : −α2β(β2 + β + 1)(β2 − β + 1)],

P8 = [3 : α2(β − 1)(β + 1)(β3 + β + 1) : αβ(β4 − β3 − β − 2)],

P9 = [3 : αβ(β − 1)2(β2 + β + 1) : −α2β(β2 + β + 1)(β2 − β + 1)],

P10 = [3 : αβ(β − 1)2(β2 + β + 1) : α2(β − 1)(β3 + β2 + 1)],

P11 = [3 : αβ(β4 + 2β3 + 2β + 1) : −α2β2(β2 + β + 1)],

P12 = [3 : −α2(β2 + β + 1)(β3 − β + 1) : −αβ(2β4 + β3 + β + 2)].
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Tangents to Fermat cubic

We now consider lines which are tangent to Fermat cubic at flex points, sextactic points
and in type 9 points.

Remark.

Every line tangent to a Fermat cubic at a flex point intersects the cubic in another flex
point.
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Tangents to Fermat cubic

Theorem.
Every line tangent to a Fermat cubic at a sextactic point intersects the cubic again in a
flex point. For each flex point there are 3 lines tangent at sextactic points passing
through it.

Theorem.
Every line tangent to a Fermat cubic at a point of type 9 intersects the cubic again in
another point of type 9. Moreover, for each point P of type 9 there exists two other
points Q,R of type 9 such that:
- line tangent to Fermat cubic at P intersects the cubic in Q,
- line tangent to Fermat cubic at Q intersects the cubic in R ,
- line tangent to Fermat cubic at R intersects the cubic in P .
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Conics and Type-9 Points

We explore conics that intersect
the Fermat cubic at two type-9
points with an intersection
multiplicity of 3. These conics
have interesting properties.
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How to find such conics?

Lemma

If two affine curves f and g , passing through (0, 0), can be written as

f (x , y) = x + other monomials

g(x , y) = y k + monomials of higher degrees,

then the intersection index of f and g at (0, 0) is at most k .
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Algorithm (sketch)

• Let F be the Fermat cubic. Let C be a conic of general form:

C : ax2 + by 2 + cz2 + dxy + exz + fyz = 0.

• Select a type-9 point P , write its coordinates as P = [1 : yP : zP ].

• Put x = 1, y = y + yP and z = z + zP in F and C .

• Condition 1: C has to pass through (0, 0).

• ”Remove” monomial z from C .

• Condition 2: the coefficient at y in C has to be equal to 0.

• ”Remove” monomial yz and z2 from C .

• Condition 3: the coefficient at y 2 in C has to be equal to 0.
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Conics and Type-9 Points

• There exists 324 conics with
double triple-tangency in
these 72 points.

• For each point there are 9
such conics.
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Results

For each point of type 9, we considered the pencil of conics passing through it.

• These 9 conics intersect in 30 points (not on Fermat cubic):
• 3 triple points,
• 27 double points.

• There are 2016 intersection points overall.

• 1944 points lie on only two conics.

• 72 points lie on nine conics.

The new 72 points lie on xyz = 0 (24 points on each line), which is the Hessian of
Fermat cubic.
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Further results:

• There are 108 conics with double triple-tangency passing through two sextactic
points.

• There are 9 such conics passing through each sextactic point.

• For any line passing through 2 sextactic points S1 and S2, its third point of
intersection with Fermat cubic is a flex if and only if there exists a double
triple-tangency conic passing through S1 and S2.

• For any line passing through 2 points P1 and P2 of type 9, not tangent to Fermat
cubic, its third point of intersection with Fermat cubic is a flex if and only if there
exists a double triple-tangency conic passing through P1 and P2.
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Thank You
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