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Today I will continue my research on Henselian valued fields, and
particularly on Hensel minimal structures. The axiomatic theory of
those structures was introduced by Cluckers–Halupczok–Rideau
(2022). They followed numerous earlier attempts to find suitable
approaches in geometry of Henselian valued fields which, likewise
o-minimality in real geometry, would realize the postulates of both
tame topology and tame model theory. Those attempts have led to
various, axiomatically based concepts such as C-minimality,
P-minimality, V-minimality, b-minimality, tame structures, and
eventually Hensel minimality.

So let K be a 1-h-minimal structure, i.e. a model of a 1-h-minimal
theory in an expansion L of the language of valued fields. The
main aim is to establish the following two properties of closed
0-definable subsets A in the affine spaces Kn.

Theorem

Every closed 0-definable subset A of Kn is the zero locus Z(g) of a
continuous 0-definable function g on Kn.
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Theorem

For every closed 0-definable subset A of an affine space Kn, there
exists a 0-definable retraction r : X → A.

The proofs of these theorems make use of a model-theoretic
compactness argument and ubiquity of clopen sets in
non-Archimedean geometry. Note also that while the former
property is a counterpart of the one from o-minimal geometry, the
former does not hold in real geometry in general.

As an immediate corollary from Theorem 2, we obtain the
following non-Archimedean version of the Tietze–Urysohn
extension theorem.

Corollary

Let A be a closed 0-definable subset of an affine space Kn. Then
every continuous 0-definable function f : A→ K can be extended
to a continuous 0-definable function F : X → K .
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For the proofs of both theorems, we shall proceed by induction
with respect to the dimension k = dimA. The case k = 0 is
straightforward. So assume that the conclusion holds for the
subsets of Kn of dimension < k with 1 ¬ k ¬ n.

Lemma

If A =
⋃r

i=1 Ai and the conclusions of the main theorems hold for
every subset Ai , then they hold for A.

We shall first consider the case k < n, reducing the problem to the
sets A of a special form. To this end, we shall apply reparametrized
cell decomposition, the above lemma and a model-theoretic
compactness argument.

For coordinates x = (x1, . . . , xn) in the affine space Kn, write

x = (y , z), y = (x1, . . . , xk), z = (xk+1, . . . , xn).

Let π : Kn → K k be the projection onto the first k coordinates.
For y ∈ K k , denote by Ay ⊂ Kn−k the fiber of the set A over the
point y .
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We can assume that A is the closure of a reparametrized
0-definable cell C = (Cξ)ξ of dimension k , with RV -sort
parameters ξ and centers cξ. Since definable RV -unions of finite
sets stay finite, the restriction of π to C has finite fibers of
bounded cardinality.

Further, by suitable 0-definable partitioning, we can assume that A
is the closure E of a 0-definable subset E of dimension k such that
all the fibers Ey , y ∈ π(E ), have the same cardinality, say s, and
the sets Cj(y) = {cji (y), i = 1, . . . , sj} of j-th coordinates of the
fibers Ey have the same cardinality, say sj , for each
j = k + 1, . . . , n. Since the fibers Ey are finite, the projection

F := π(E ) ⊂ K k

is of dimension k . Again this fact and cell decomposition, along
with the above Lemma and the induction hypothesis, allow us to
come down to the case where F is an open subset of K k .
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Now consider the polynomials

Pj(y ,Zj) :=
∏

z∈Cj (y)

(Zj−z) =
sj∏
i=1

(Zj−cji (y)), y ∈ F , j = k+1, . . . , n,

Then

Pj(y ,Zj) = Z
sj
j + bj ,1(y)Z

sj−1
j + . . .+ bj ,sj (y), j = k + 1, . . . , n,

where bj ,i : F → K , i = 1, . . . , sj , are 0-definable functions.

We still need the following lemma, which resembles to some extent
the primitive element theorem from algebraic geometry.

Lemma

There exist a finite number of linear functions

λl : K
n−k → K , l = 1, . . . , p,

with integer coefficients such that, for every y ∈ F , λl is injective
on the product

∏n
j=k+1 Cj(y) for some l = 1, . . . , p.
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Hence we can even assume, after a suitable 0-definable
partitioning, that one linear function

λ : Kn−k → K

with integer coefficients is injective on every product

n∏
j=k+1

Cj(y), y ∈ F .

Consider now the polynomial

P(y ,Z ) :=
∏
z∈Ey

(Z − λ(z)) = Z s + b1(y)Z
s−1 + . . .+ bs(y),

where bj : F → K are 0-definable functions. Then

E = {x = (y , z) ∈ F × Kn−k :

Pk+1(x1, . . . , xk , xk+1) = . . . = Pn(x1, . . . , xk , xn) =

P(x1, . . . , xk , λ(xk+1, . . . , xn)) = 0}.
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The sets of all points at which the functions bji (y) and bi (y) are
not continuous are 0-definable subsets of F of dimension < k , and
so are the closures of those sets. This along with the induction
hypothesis allow us to additionally assume that bji (y) and bi (y)
are continuous functions on the open subset F . Hence E is a
closed subset of F × Kn−k , and thus

∂E ⊂ ∂F × Kn−k .

In this manner, we have reduced the proofs of the theorems under
study to the case where A is the closure of the set E described
above. Moreover, in the proof of the first theorem, we can assume
without loss of generality that the set E is bounded.
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Sketch of the proof of Theorem 1. Since F is an open subset of
K k , its frontier ∂F is a closed subset of K k of dimension < k . By
the induction hypothesis, ∂F is the zero locus of a continuous
0-definable function f : K k → K .

Observe now that the functions bji (y) are bounded because so are
the sets A and E under study. Therefore the functions

f (y) · bji (y) and f (y) · bi (y)

extend by zero through ∂F to continuous functions on F . And
then they extend by zero off F to continuous 0-definable functions
on K k .

We can thus regard the coefficients of the following polynomials
(in the indeterminates Zk+1, . . . ,Zn and Z , respectively):

Qk+1(y ,Zj) := f (y)·Pk+1(y ,Zk+1), . . . , Qn(y ,Zn) := f (y)·Pn(y ,Zn)

and
Q(y ,Z ) := f (y) · P(y ,Z ),

as continuous 0-definable functions on K k vanishing off the set F .
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Put
G := {x ∈ Kn : Qk+1(x1, . . . , xk , xk+1) = . . . =

Qn(x1, . . . , xk , xn) = Q(x1, . . . , xk , λ(xk+1, . . . , xn)) = 0}.

Then
G ∩ (F × Kn−k) = E (∗)

and
G ∩ ((K k \ F )× Kn−k) = (K k \ F )× Kn−k . (†)

Put

E :=
{
(b, c , z) ∈ E × Kn−k : b ∈ F ∧ ∀ y ∈ ∂F |z | < |y − b|

∧ ∀ d ∈ Kn−k [((b, d) ∈ E , c 6= d)⇒ |z | < |d − c |]
}

and Ẽ := p(E), where

p : K k × Kn−k × Kn−k 3 (y , z ,w) 7→ (y , z + w) ∈ K k × Kn−k .

Let Ã be the closure of Ẽ ; obviously, E ⊂ Ẽ and A ⊂ Ã.
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Remark

Note that the last condition in the definition of the set E will be
used only in the proof of Theorem 2.

It is easy to check that Ẽ ⊃ E is a clopen subset of F ×Kn−k , and
we have

∂Ẽ = ∂E , Ã = Ẽ ∪ ∂E

and

Ã ∩ ((K k \ F )× Kn−k) = Ã ∩ (∂F × Kn−k) = ∂E .

Thus eqaulity † yields

G ∩ Ã ∩ ((K k \ F )× Kn−k) = Ã ∩ ((K k \ F )× Kn−k) = ∂E .

Further, equality ∗ yields

G ∩ Ã ∩ (F × Kn−k) = E ∩ Ã = E .
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Combining the above two formulae, we get

G ∩ Ã = E ∪ ∂E = A. (‡)

But by the induction hypothesis, ∂E is the zero locus of a
continuous 0-definable function e : Kn → K . Therefore the
function

ẽ(x) =

{
0 if x ∈ Ã,

e(x) if x ∈ Kn \ Ã.

is continuous. Obviously, Ã is the zero locus of the function ẽ:

Ã = {x ∈ Kn : ẽ(x) = 0}.

Hence and by equality ‡, we obtain

A = {Qk+1(x1, . . . , xk , xk+1) = . . . = Qn(x1, . . . , xk , xn) =

Q(x1, . . . , xk , λ(xk+1, . . . , xn)) = ẽ(x) = 0} ⊂ Kn,

which completes the proof.
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