MATERIAŁY NA XXXIII KONFERENCJĘ I WARSZTATY Z GEOMETRII ANALITYCZNEJ I ALGEBRAICZNEJ

2012

Łódź

str. 51

THE FUKUI INEQUALITY FOR THE ŁOJASIEWICZ EXPONENT OF NONDEGENERATE CONVENIENT SINGULARITIES

Grzegorz Oleksik (Łódź)

Abstract

In the article we give a new elementary proof of the Fukui inequality [F] for the Łojasiewicz exponent of nondegenerate singularities with convenient Newton diagrams. In the proof we use only the Curve Selection Lemma.

1 Introduction

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a holomorphic function in an open neighborhood of $0 \in \mathbb{C}^n$ and $\sum_{\nu \in \mathbb{N}^n} a_\nu z^\nu$ be the Taylor expansion of f at 0. We define $\Gamma_+(f) := \operatorname{conv}\{\nu + \mathbb{R}^n_+ : a_\nu \neq 0\} \subset \mathbb{R}^n$ and call it the Newton diagram of f. Let $u \in \mathbb{R}^n_+ \setminus \{0\}$. Put $l(u, \Gamma_+(f)) := \inf\{\langle u, v \rangle : v \in \Gamma_+(f)\}$ and $\Delta(u, \Gamma_+(f)) := \{v \in \Gamma_+(f) : \langle u, v \rangle = l(u, \Gamma_+(f))\}$. We say that $S \subset \mathbb{R}^n$ is a face of $\Gamma_+(f)$, if $S = \Delta(u, \Gamma_+(f))$ for some $u \in \mathbb{R}^n_+ \setminus \{0\}$. The vector u is called the primitive vector of S. It is easy to see that S is a closed and convex set and $S \subset \operatorname{Fr}(\Gamma_+(f))$, where $\operatorname{Fr}(A)$ denotes the boundary of A. One can prove that a face $S \subset \Gamma_+(f)$ is compact if and only if all coordinates of its primitive vector u are positive. We call the family of all compact faces of $\Gamma_+(f)$ the Newton boundary of f and denote by $\Gamma(f)$. We denote by $\Gamma^k(f)$ the set of all compact k-dimensional faces of $\Gamma(f)$, $k = 0, \ldots, n-1$. For every compact face $S \in \Gamma(f)$ we define quasihomogeneous polynomial $f_S := \sum_{\nu \in S} a_\nu z^\nu$. We say that f is nondegenerate on the face $S \in \Gamma(f)$, if the system of equations $\frac{\partial f_S}{\partial z_1} = \ldots = \frac{\partial f_S}{\partial z_n} = 0$ has no solution in $(\mathbb{C}^*)^n$, where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. We say that f is nondegenerate in the Kouchnirenko's sense (shortly nondegenerate) if it is nondegenerate on each face of $\Gamma(f)$. We say that f is a singularity if f is a nonzero holomorphic function in some open neighborhood of the origin and f(0) = 0, $\nabla f(0) = 0$, where $\nabla f = (f'_{z_1}, \ldots, f'_{z_n})$. We say that f is an isolated singularity if f is a singularity, which has an isolated critical point in the origin i.e. additionally $\nabla f(z) \neq 0$ for $z \neq 0$.

Let
$$i \in \{1, ..., n\}, n \ge 2$$
.

Definition 1.1 We say that $S \in \Gamma^{n-1}(f) \subset \mathbb{R}^n$ is an exceptional face with respect to the axis OX_i if one of its vertices is at distance 1 to the axis OX_i and another vertices constitute (n-2)-dimensional face which lies in one of the coordinate hyperplane including the axis OX_i .

Figure 1: An exceptional face S with respect to the axis OX_3 .

We say that $S \in \Gamma^{n-1}(f)$ is an exceptional face of f if there exists $i \in \{1, \ldots, n\}$ such that S is an exceptional face with respect to the axis OX_i . Denote by E_f the set of exceptional faces of f.

Definition 1.2 We say that the Newton diagram of f is convenient if it has nonempty intersection with every coordinate axis.

Definition 1.3 We say that the Newton diagram of f is nearly convenient if its distance to every coordinate axis doesn't exceed 1.

For every (n-1)-dimensional compact face $S \in \Gamma(f)$ we shall denote by $x_1(S), \ldots, x_n(S)$ coordinates of intersection of the hyperplane determined by face S with the coordinate axes. We define $m(S) := \max\{x_1(S), \ldots, x_n(S)\}$. It is easy to see that

$$x_i(S) = \frac{l(u, \Gamma_+(f))}{u_i}, i = 1, \dots, n$$

where u is a primitive vector of S. It is easy to check that the Newton diagram $\Gamma_+(f)$ of an isolated singularity f is nearly convenient. So, "nearly convenience" of the Newton diagram is a neccesary condition for f to be an isolated singularity. For a singularity f such that $\Gamma^{n-1}(f) \neq \emptyset$, we define

(1)
$$m_0(f) := \max_{S \in \Gamma^{n-1}(f)} m(S)$$

It is easy to see that in the case $\Gamma_+(f)$ is convenient $m_0(f)$ is equal to the maximum of coordinates of the points of the intersection of the Newton diagram of f and the union of all axes.

Remark 1.4 A definition of $m_0(f)$ for all singularities (even for $\Gamma^{n-1}(f) = \emptyset$), can be found in [F]. In the case $\Gamma^{n-1}(f) \neq \emptyset$ both definitions are equivalent.

Let $f = (f_1, \ldots, f_n) : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ be a holomorphic mapping having an isolated zero at the origin. We define the number

(2)
$$l_0(f) := \inf \{ \alpha \in \mathbb{R}_+ : \exists_{C>0} \exists_{r>0} \forall_{\|z\| < r} \|f(z)\| \ge C \|z\|^{\alpha} \}$$

and call it the Lojasiewicz exponent of the mapping f. There are formulas and estimations of the number $l_0(f)$ under some nondegeneracy conditions of f (see [B], [BE1], [Lt], [Ph]).

Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be an isolated singularity. We define a number $\pounds_0(f) := l_0(\nabla f)$ and call it the Lojasiewicz exponent of singularity f. Now we give some important known properities of the Lojasiewicz exponent (see [L-JT]):

(a) $\pounds_0(f)$ is a rational number.

(b)
$$\pounds_0(f) = \sup\{\frac{\operatorname{ord} \nabla f(z(t))}{\operatorname{ord} z(t)} : 0 \neq z(t) \in \mathbb{C}\{t\}^n, z(0) = 0\}.$$

- (c) The infimum in the definition of the Łojasiewicz exponent is attained for $\alpha = \pounds_0(f)$.
- (d) $s(f) = [\pounds_0(f)] + 1$, where s(f) is the degree of C^0 -sufficiency of f [ChL].

Lenarcik gave in [L] the formula for the Lojasiewicz exponent for singularities of two variables, nondegenerate in Kouchnirenko sense, in terms of its Newton diagram (another formulas in general two-dimensional case see [CK1], [CK2]). **Theorem 1.5 (**[L]) Let $f : (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ be an isolated nondegenerate singularity and $\Gamma^1(f) \setminus E_f \neq \emptyset$. Then

(3)
$$\pounds_0(f) = \max_{S \in \Gamma^1(f) \setminus E_f} m(S) - 1$$

Remark 1.6 In two-dimensional case one can prove that for isolated singularities such that $\Gamma^1(f) \setminus E_f = \emptyset$, i.e. $\Gamma^1(f)$ consist of only exceptional segments, we have $\pounds_0(f) = 1$.

Let us pass to three dimensional case. Denote by \overline{AB} the segment joining two different points $A, B \in \mathbb{R}^3$. We consider the following segments in \mathbb{R}^3 :

 $I_1^k = \overline{(0,1,1)(k,0,0)}, \ I_2^k = \overline{(1,0,1)(0,k,0)}, \ I_3^k = \overline{(1,1,0)(0,0,k)}, \ k \in \{2,3\ldots\}.$

Put $\mathcal{J} := \{I_j^k : j = 1, 2, 3, k = 2, 3, ...\}$. Every segment I of this family intersects exactly one coordinate axis in exactly one point. We denote by m(I) nonzero coordinate of this point (equal to k). We have the following result.

Theorem 1.7 ([O1]) Let $f : (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$ be an isolated and nondegenerate singularity.

1° If $\Gamma^2(f) = \emptyset$ or $\Gamma^2(f) = E_f$, then there exists excatly one segment $I \in \mathcal{J} \cap \Gamma^1(f)$ and

$$\pounds_0(f) = m(I) - 1.$$

 2^0 If $\Gamma^2(f) \setminus E_f \neq \emptyset$, then

(4)
$$\pounds_0(f) \le \max_{S \in \Gamma^2(f) \setminus E_f} m(S) - 1$$

Now we pass to *n*-dimensional case. In multidimensional case we have an upper bounds for $\mathcal{L}_0(f)$, which was given by T. Fukui in 1991 without removing any exceptional faces (see also [A],[O],[O1]). It is similar to the one given in Theorem 1.7 2⁰ but we conjecture that in the inequality (5) after removing exceptional faces there is the equality. It was proved to be true for quasihomogeneous surface singularities in [KOP].

Theorem 1.8 ([F]) Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be an isolated nondegenerate singularity. Then

(5)
$$\pounds_0(f) \le m_0(f) - 1.$$

The proof of the above theorem is technically intricate. We prove this theorem in an elementary way in the case Newton diagram of f is convenient. Precisely we prove, using only the Curve Selection Lemma, the following theorem.

Theorem 1.9 Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0), n \ge 2$, be an isolated nondegenerate singularity such that $\Gamma(f)$ is convenient. Then

(6)
$$\pounds_0(f) \le \max_{S \in \Gamma^{n-1}(f)} m(S) - 1$$

Remark 1.10 It is easy to see that if $\Gamma(f)$ is convenient then $\Gamma^{n-1}(f) \neq \emptyset$.

2 Proof of the Theorem 1.9

We give now a lemma used in the proof.

Lemma 2.1 Let $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0), n \geq 3$, be a holomorphic function in an open neighborhood of $0 \in \mathbb{C}^n$ and $g(z_1, \ldots, z_k) := f(z_1, \ldots, z_k, 0, \ldots, 0) \neq 0, k \geq 2$. Then

(7)
$$\Gamma(g) = \{ S \in \Gamma(f) : S \subset \{ x_{k+1} = \dots = x_n = 0 \} \}.$$

PROOF." \subset ". Let $S \in \Gamma(g)$, so $S = \Delta(u, \Gamma_+(g))$ for some $u \in (\mathbb{R}_+ \setminus \{0\})^k$. Of course $S \subset \Gamma_+(f) \cap \{x_{k+1} = \ldots = x_n = 0\}$. Set $u' = (u_1, \ldots, u_k, l(u, \Gamma_+(g)) + 1, \ldots, l(u, \Gamma_+(g)) + 1) \in \mathbb{R}^n$. We show that $S = \Delta(u', \Gamma_+(f))$. By definition of u'we have that $l(u', \Gamma_+(f))$ can be realised only for $v \in \Gamma_+(f) \cap \{x_{k+1} = \ldots = x_n = 0\}$. But it is easy to check that $\Gamma_+(f) \cap \{x_{k+1} = \ldots = x_n = 0\} = \Gamma_+(g)$. So we get $l(u', \Gamma_+(f)) = l(u, \Gamma_+(g))$ and $\Delta(u', \Gamma_+(f)) = \Delta(u, \Gamma_+(g))$. Reasumming $S = \Delta(u', \Gamma_+(f))$, it is in $\Gamma(f)$.

" \subset ". Let $S \in \Gamma(f)$ i $S \subset \{x_{k+1} = \ldots = x_n = 0\}$. Then $S = \Delta(u, \Gamma_+(f))$ for some $u \in (\mathbb{R}_+ \setminus \{0\})^n$ and as we observed above $\Gamma_+(f) \cap \{x_{k+1} = \ldots = x_n = 0\} = \Gamma_+(g)$. So $l(u, \Gamma_+(f)) = l(u', \Gamma_+(g))$, where $u' = (u_1, \ldots, u_k)$. It follows that $\Delta(u', \Gamma_+(g)) = \Delta(u, \Gamma_+(f))$ and $S \in \Gamma(g)$. That concludes the proof.

We can go to the proof of Theorem 1.9. PROOF. It is enough to show that

$$|\nabla f(x)| \ge C |x|^{m_0(f)-1}.$$

for some C > 0 in some neighborhood of $0 \in \mathbb{C}^n$. Suppose to the contrary that this inequality isn't true. Hence be the Curve Selection Lemma we get that there exists an analytic curve $\phi : [0, \epsilon) \to (\mathbb{C}^n, 0)$ such that

(8)
$$\operatorname{ord} |\nabla f \circ \phi(t)| > \operatorname{ord} |\phi(t)|^{m_0(f)-1}$$

Let $J = \{j \in \{1, ..., n\} : \phi_j \neq 0\}$. We have

$$\phi_j(t) = x_j^0 t^{q_j} + higher \text{ order terms, } j \in J$$

for some $q_j > 0$, $x_j^0 \neq 0$. Set $q_* = \min_{j \in J} q_j$ and let $\Gamma' := \Gamma_+(f) \cap \mathbb{R}^J$, where $\mathbb{R}^J \subset \mathbb{R}^n$ is the linear subspace of \mathbb{R}^n spanned by the axis OX_j , $j \in J$. Then vector $w = (\operatorname{ord} \phi_j)_{j \in J}$ supports a compact face S of Γ' and

(9)
$$\frac{d}{q_*} \le m_0(f),$$

where $\sum_{j \in J} q_j x_j = d$ is the equation of the supporting hyperplane of face S. Moreover by Lemma 2.1 $S \in \Gamma(f)$. We get further

$$f'_{z_i} \circ \phi(t) = t^{d-q_i} \operatorname{in}_w f'_{z_i}(x_1^0, \dots, x_n^0) + higher \text{ order terms, } i = 1, 2, \dots n$$

where $x_j^0 := 1$ for $j \notin J$. There exists a variable $z_j, j \in J$, which appears in a monomial of f_S with non-zero coefficient. For these variables we have $\operatorname{in}_w f'_{z_i} = (f_S)'_{z_i}$. Since f is nondegenerate on the face S, so among these variables there exists a variable z_{j_0} such that $(f_S)'_{z_{j_0}}(x_0^1, \ldots, x_0^n) \neq 0$. Then $\operatorname{ord}(f'_{z_{j_0}} \circ \phi(t)) = d - q_{j_0}$ and by inequality (8) we get $d - q_{j_0} > q_*(m_0(f) - 1)$. Hence after easy transformations we get

$$\frac{d}{q_*} > m_0(f) + \left(\frac{q_{j_0}}{q_*} - 1\right),$$

which contradicts inequality (9). It finishes the proof.

Example 2.2 Let $f(z_1, z_2, z_3) := z_3^{20} + z_1^3 + z_2^3 + z_3^4 z_1 + z_3^4 z_2$. It is easy to check that f is an isolated nondegenerate singularity. We also see that $\Gamma(f)$ is convenient and consists of two faces S_1 and S_2 but the face $S_1 = \operatorname{conv}\{(1, 0, 4), (0, 1, 4), (0, 0, 20)\}$ is an exceptional with respect to the axis OX_3 and $m_0(f) = m(S_1) = 20$ (see Fig. 2).

Figure 2: The Newton boundary of singularity in Example 2.2

By Theorem 1.9

$$\pounds_0(f) \le m_0(f) - 1 = 20 - 1 = 19$$

and by Theorem 1.7 we get that

(10)
$$\pounds_0(f) \le \max_{S \in \Gamma^2(f) \setminus \{S_1\}} m(S) - 1 = m(S_2) - 1 = 6 - 1 = 5.$$

Hence the last estimation is better. It is easy to check that singularity $g := f - z_3^{20}$ is an isolated and weighted with weights 3, 3, 6. Hence by Theorem 1 of paper [KOP] we have

$$\pounds_0(g) = \max\{3, 3, 6\} - 1 = 5$$

Since $\operatorname{ord}(\nabla f - \nabla g) > \pounds_0(g)$, then by Lemma 1.4 in [P] we get that $\pounds_0(f) = \pounds_0(g) = 5$. Hence estimation obtained by Theorem 1.7 is optimal.

References

- [A] Abderrahmane, O. M.: On the Lojasiewicz exponent and Newton polyhedron. Kodai. Math. J. 28 (2005), 106-110.
- [B] Bivia-Ausina, C.: Lojasiewicz exponents, the integral closure of ideals and Newton polyhedra. J. Math. Soc. Japan 55 (2003), 655-668.
- [BE1] Bivia-Ausina, C. and Encinas S.: Lojasiewicz exponent of families of ideals, Rees mixed multiplicities and Newton filtrations. arXiv:1103.1731v1 [math.AG] (2011).
- [ChL] Chang, S. S. and Lu, Y. C.: On C⁰ sufficiency of complex jets. Canad. J. Math. 25 (1973), 874-880.
- [CK1] Chądzyński, J. and Krasiński, T.: The Lojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero. In: Singularities, Banach Center Publ. 20, PWN, Warszawa 1988, 139-146.
- [CK2] Chądzyński, J. and Krasiński, T.: Resultant and the Lojasiewicz exponent. Ann. Polon. Math. 61 (1995), 95-100.
- [F] Fukui, T.: Lojasiewicz type inequalities and Newton diagrams. Proc. Amer. Math. Soc. 112 (1991), 1169-1183.
- [KOP] Krasiński, T., Oleksik, G., Płoski A.: The Lojasiewicz exponent of an isolated weighted homogeneous surface singularity. Proc. Amer. Math. Soc. 137 (2009), 3387-3397.
- [L] Lenarcik, A.: On the Lojasiewicz exponent of the gradient of a holomorphic function. In: Singularities Symposium-Lojasiewicz 70. Banach Center Publ. 44, PWN, Warszawa 1998, 149-166.
- [L-JT] Lejeune-Jalabert, M. and Teissier, B.: Cloture integrale des idéaux et equisingularité. École Polytechnique 1974.
- [Lt] Lichtin, B.: Estimation of Lojasiewicz exponents and Newton polygons. Invent. Math. 64 (1981), 417-429.
- [O] Oleksik, G.: The Lojasiewicz exponent of nondegenerate singularities. Univ. Iag. Acta Math. 47 (2009), 301-308.

- [O1] Oleksik, G.: The Lojasiewicz exponent of nondegenerate surface singularities. arXiv:1110.4273v1 [math.CV] (2011).
- [P] Płoski, A.: Sur l'exposant d'une application analytique II. Bull. Polish Acad. Sci. Math. 33 (1985), 123-127.
- [Ph] Pham, T.S.: On the effective computation of Lojasiewicz exponents via Newton polyhedra, Period. Math. Hungar. 54 (2007), 201-213.

NIERÓWNOŚĆ FUKUI DLA WYKŁADNIKA ŁOJASIEWICZA NIEZDEGENEROWANYCH DOGODNYCH OSOBLIWOŚCI

Streszczenie. W pracy podajemy nowy elementarny dowód nierówności Fukui [F] na wykładnik Łojasiewicza osobliwości niezdegenerowanych o dogodnych diagramach Newtona. W tym dowodzie korzystamy tylko z Lematu o Wyborze Krzywej.

Łódź, 9 – 13 stycznia 2012 r.

58