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THE FUKUI INEQUALITY
FOR THE �OJASIEWICZ EXPONENT

OF NONDEGENERATE
CONVENIENT SINGULARITIES

Grzegorz Oleksik (�ód¹)

AbstractIn the article we give a new elementary proof of the Fukui inequality [F]for the �ojasiewicz exponent of nondegenerate singularities with convenientNewton diagrams. In the proof we use only the Curve Selection Lemma.
1 Introduction
Let f : (Cn; 0) �! (C; 0) be a holomorphic function in an open neighborhood of0 2 Cn and P�2Nn a�z� be the Taylor expansion of f at 0: We de�ne �+(f) :=convf�+Rn+ : a� 6= 0g � Rn and call it the Newton diagram of f . Let u 2 Rn+nf0g.Put l(u;�+(f)) := inff< u; v >: v 2 �+(f)g and �(u;�+(f)) := fv 2 �+(f) :<u; v >= l(u;�+(f))g: We say that S � Rn is a face of �+(f); if S = �(u;�+(f))for some u 2 Rn+ nf0g. The vector u is called the primitive vector of S: It is easy tosee that S is a closed and convex set and S � Fr(�+(f)); where Fr(A) denotes theboundary of A: One can prove that a face S � �+(f) is compact if and only if allcoordinates of its primitive vector u are positive. We call the family of all compact
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faces of �+(f) the Newton boundary of f and denote by �(f). We denote by �k(f)the set of all compact k-dimensional faces of �(f); k = 0; : : : ; n � 1: For everycompact face S 2 �(f) we de�ne quasihomogeneous polynomial fS :=P�2S a�z� .We say that f is nondegenerate on the face S 2 �(f); if the system of equations@fS@z1 = : : : = @fS@zn = 0 has no solution in (C�)n; where C� = C n f0g. We saythat f is nondegenerate in the Kouchnirenko's sense (shortly nondegenerate ) ifit is nondegenerate on each face of �(f): We say that f is a singularity if f is anonzero holomorphic function in some open neighborhood of the origin and f(0) =0; rf(0) = 0; where rf = (f 0z1 ; : : : ; f 0zn): We say that f is an isolated singularity iff is a singularity, which has an isolated critical point in the origin i.e. additionallyrf(z) 6= 0 for z 6= 0:Let i 2 f1; : : : ; ng; n � 2:
De�nition 1.1 We say that S 2 �n�1(f) � Rn is an exceptional face with respect
to the axis OXi if one of its vertices is at distance 1 to the axis OXi and another
vertices constitute (n � 2)-dimensional face which lies in one of the coordinate
hyperplane including the axis OXi:

Figure 1: An exceptional face S with respect to the axis OX3:
We say that S 2 �n�1(f) is an exceptional face of f if there exists i 2 f1; : : : ; ngsuch that S is an exceptional face with respect to the axis OXi. Denote by Ef theset of exceptional faces of f:

De�nition 1.2 We say that the Newton diagram of f is convenient if it has
nonempty intersection with every coordinate axis.

De�nition 1.3 We say that the Newton diagram of f is nearly convenient if its
distance to every coordinate axis doesn't exceed 1.
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For every (n � 1)-dimensional compact face S 2 �(f) we shall denote byx1(S); : : : ; xn(S) coordinates of intersection of the hyperplane determined by faceS with the coordinate axes. We de�ne m(S) := maxfx1(S); : : : ; xn(S)g: It is easyto see that xi(S) = l(u;�+(f))ui ; i = 1; : : : ; n;

where u is a primitive vector of S: It is easy to check that the Newton diagram�+(f) of an isolated singularity f is nearly convenient. So, "nearly convenience"of the Newton diagram is a neccesary condition for f to be an isolated singularity.For a singularity f such that �n�1(f) 6= ;; we de�ne
(1) m0(f) := maxS2�n�1(f)m(S):
It is easy to see that in the case �+(f) is convenientm0(f) is equal to the maximumof coordinates of the points of the intersection of the Newton diagram of f and theunion of all axes.
Remark 1.4 A de�nition of m0(f) for all singularities ( even for �n�1(f) = ;),
can be found in [F]. In the case �n�1(f) 6= ; both de�nitions are equivalent.

Let f = (f1; : : : ; fn) : (Cn; 0) �! (Cn; 0) be a holomorphic mapping having anisolated zero at the origin. We de�ne the number
(2) l0(f) := inff� 2 R+ : 9C>09r>08kzk<rkf(z)k � Ckzk�g
and call it the �ojasiewicz exponent of the mapping f: There are formulas andestimations of the number l0(f) under some nondegeneracy conditions of f (see[B], [BE1], [Lt], [Ph]).Let f : (Cn; 0) �! (C; 0) be an isolated singularity. We de�ne a number
$0(f) := l0(rf) and call it the �ojasiewicz exponent of singularity f: Now we givesome important known properities of the �ojasiewicz exponent (see [L-JT]):
(a) $0(f) is a rational number.
(b) $0(f) = supf ordrf(z(t))ord z(t) : 0 6= z(t) 2 Cftgn; z(0) = 0g:
(c) The in�mum in the de�nition of the �ojasiewicz exponent is attained for� = $0(f).
(d) s(f) = [$0(f)] + 1; where s(f) is the degree of C0-su�ciency of f [ChL].
Lenarcik gave in [L] the formula for the �ojasiewicz exponent for singularitiesof two variables, nondegenerate in Kouchnirenko sense, in terms of its Newtondiagram (another formulas in general two-dimensional case see [CK1], [CK2]).
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Theorem 1.5 ([L]) Let f : (C2; 0) �! (C; 0) be an isolated nondegenerate singu-
larity and �1(f) n Ef 6= ;. Then
(3) $0(f) = maxS2�1(f)nEf

m(S)� 1:
Remark 1.6 In two-dimensional case one can prove that for isolated singularities
such that �1(f) n Ef = ;; i.e. �1(f) consist of only exceptional segments, we have
$0(f) = 1.
Let us pass to three dimensional case. Denote by AB the segment joining twodi�erent points A;B 2 R3: We consider the following segments in R3:
Ik1 = (0; 1; 1)(k; 0; 0); Ik2 = (1; 0; 1)(0; k; 0); Ik3 = (1; 1; 0)(0; 0; k); k 2 f2; 3 : : :g:

Put J := fIkj : j = 1; 2; 3; k = 2; 3; : : :g: Every segment I of this family intersectsexactly one coordinate axis in exactly one point. We denote by m(I) nonzerocoordinate of this point (equal to k). We have the following result.
Theorem 1.7 ([O1]) Let f : �C3; 0� �! (C; 0) be an isolated and nondegenerate
singularity.

10 If �2(f) = ; or �2(f) = Ef ; then there exists excatly one segment I 2 J \�1(f)
and

$0(f) = m(I)� 1:
20 If �2(f) n Ef 6= ;; then
(4) $0(f) � maxS2�2(f)nEf

m(S)� 1:
Now we pass to n-dimensional case. In multidimensional case we have an upperbounds for $0(f); which was given by T. Fukui in 1991 without removing anyexceptional faces (see also [A],[O],[O1]). It is similar to the one given in Theorem1.7 20 but we conjecture that in the inequality (5) after removing exceptionalfaces there is the equality. It was proved to be true for quasihomogeneous surfacesingularities in [KOP].

Theorem 1.8 ([F]) Let f : (Cn; 0) �! (C; 0) be an isolated nondegenerate singu-
larity. Then

(5) $0(f) � m0(f)� 1:
The proof of the above theorem is technically intricate. We prove this theoremin an elementary way in the case Newton diagram of f is convenient. Precisely weprove, using only the Curve Selection Lemma, the following theorem.

Theorem 1.9 Let f : (Cn; 0) �! (C; 0) ; n � 2; be an isolated nondegenerate
singularity such that �(f) is convenient. Then
(6) $0(f) � maxS2�n�1(f)m(S)� 1:
Remark 1.10 It is easy to see that if �(f) is convenient then �n�1(f) 6= ;:
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2 Proof of the Theorem 1.9
We give now a lemma used in the proof.
Lemma 2.1 Let f : (Cn; 0) �! (C; 0) ; n � 3; be a holomorphic function in an
open neighborhood of 0 2 Cn and g(z1; : : : ; zk) := f(z1; : : : ; zk; 0; : : : ; 0) 6= 0; k � 2:
Then

(7) �(g) = fS 2 �(f) : S � fxk+1 = : : : = xn = 0gg:
Proof." � ": Let S 2 �(g); so S = �(u;�+(g)) for some u 2 (R+ n f0g)k: Ofcourse S � �+(f) \ fxk+1 = : : : = xn = 0g: Set u0 = (u1; : : : ; uk; l(u;�+(g)) +1; : : : ; l(u;�+(g)) + 1) 2 Rn: We show that S = �(u0;�+(f)): By de�nition of u0we have that l(u0;�+(f)) can be realised only for v 2 �+(f) \ fxk+1 = : : : = xn =0g: But it is easy to check that �+(f) \ fxk+1 = : : : = xn = 0g = �+(g): Sowe get l(u0;�+(f)) = l(u;�+(g)) and �(u0;�+(f)) = �(u;�+(g)): ReasummingS = �(u0;�+(f)); it is in �(f):
" � ": Let S 2 �(f) i S � fxk+1 = : : : = xn = 0g: Then S = �(u;�+(f)) forsome u 2 (R+ n f0g)n and as we observed above �+(f) \ fxk+1 = : : : = xn =0g = �+(g): So l(u;�+(f)) = l(u0;�+(g)); where u0 = (u1; : : : ; uk): It follows that�(u0;�+(g)) = �(u;�+(f)) and S 2 �(g): That concludes the proof. �

We can go to the proof of Theorem 1.9.
Proof. It is enough to show that

jrf(x)j � Cjxjm0(f)�1:
for some C > 0 in some neighborhood of 0 2 Cn: Suppose to the contrary thatthis inequality isn't true. Hence be the Curve Selection Lemma we get that thereexists an analytic curve � : [0; �)! (Cn; 0) such that
(8) ord jrf � �(t)j > ord j�(t)jm0(f)�1

Let J = fj 2 f1; : : : ng : �j 6= 0g: We have
�j(t) = x0j tqj + higher order terms; j 2 J

for some qj > 0; x0j 6= 0: Set q� = minj2J qj and let �0 := �+(f) \ RJ ; whereRJ � Rn is the linear subspace of Rn spanned by the axis OXj ; j 2 J: Then vectorw = (ord�j)j2J supports a compact face S of �0 and
(9) dq� � m0(f);
where Pj2J qjxj = d is the equation of the supporting hyperplane of face S:Moreover by Lemma 2.1 S 2 �(f): We get further

f 0zi � �(t) = td�qi inw f 0zi(x01; : : : x0n) + higher order terms; i = 1; 2; : : : n
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where x0j := 1 for j =2 J: There exists a variable zj ; j 2 J; which appears in amonomial of fS with non-zero coe�cient. For these variables we have inw f 0zi =(fS)0zi : Since f is nondegenerate on the face S; so among these variables there existsa variable zj0 such that (fS)0zj0 (x10; : : : ; xn0 ) 6= 0: Then ord(f 0zj0 ��(t)) = d�qj0 andby inequality (8) we get d� qj0 > q�(m0(f)� 1): Hence after easy transformationswe get dq� > m0(f) +

�qj0q� � 1� ;
which contradicts inequality (9). It �nishes the proof. �

Example 2.2 Let f(z1; z2; z3) := z203 +z31+z32+z43z1+z43z2: It is easy to check thatf is an isolated nondegenerate singularity. We also see that �(f) is convenient and
consists of two faces S1 and S2 but the face S1 = convf(1; 0; 4); (0; 1; 4); (0; 0; 20)g
is an exceptional with respect to the axis OX3 and m0(f) = m(S1) = 20(see Fig.
2).

Figure 2: The Newton boundary of singularity in Example 2.2
By Theorem 1.9

$0(f) � m0(f)� 1 = 20� 1 = 19;
and by Theorem 1.7 we get that

(10) $0(f) � maxS2�2(f)nfS1gm(S)� 1 = m(S2)� 1 = 6� 1 = 5:



57
Hence the last estimation is better. It is easy to check that singularity g := f � z203
is an isolated and weighted with weights 3; 3; 6: Hence by Theorem 1 of paper [KOP]
we have

$0(g) = maxf3; 3; 6g � 1 = 5:
Since ord(rf � rg) > $0(g); then by Lemma 1.4 in [P] we get that $0(f) =
$0(g) = 5: Hence estimation obtained by Theorem 1.7 is optimal.
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Nierówno±¢ Fukui dla wykªadnika �ojasiewicza

niezdegenerowanych dogodnych osobliwo±ci

Streszczenie. W pracy podajemy nowy elementarny dowód nierówno±ci Fukui [F]na wykªadnik �ojasiewicza osobliwo±ci niezdegenerowanych o dogodnych diagra-mach Newtona. W tym dowodzie korzystamy tylko z Lematu o Wyborze Krzywej.
�ód¹, 9 � 13 stycznia 2012 r.


