MATERIAŁY NA XXXVI KONFERENCJĘ Z GEOMETRII ANALITYCZNEJ I ALGEBRAICZNEJ

2015

Łódź

str. 41

NUMERICAL SEMIGROUPS

Arkadiusz Płoski (Kielce)

This paper is intended to give proofs of the results stated without proof in [GB-P2015]. We do this in Sections 1 and 2 following the approach due to Angermüller [An] (see also [GB-P2012]). In Section 3 we consider characteristic sequences satisfying the Abhyankar-Moh inequality which appears when studying the plane curves with one branch at infinity (see [A-M], [B-GB-P]).

In Section 4 we present some applications of numerical semigroups to plane curve singularities. In all the paper we denote by \mathbb{N} the set of non-negative integers. If $a_0, \ldots, a_m \in \mathbb{N}$ then $\mathbb{N}a_0 + \cdots + \mathbb{N}a_m$ stands for the set of all integers of the form $q_0a_0 + \cdots + q_ma_m$, where $q_0, \ldots, q_m \in \mathbb{N}$. If $S \subset \mathbb{N}$, $S \neq \{0\}$ then gcd(S) denotes the greatest common divisor of all integers belonging to S.

1. Nice sequences

Let us begin with the following lemma.

Lemma 1.1. Let (v_0, \ldots, v_h) be a sequence of positive integers. Set $d_k = \gcd(v_0, \ldots, v_k)$ for $k = 0, \ldots, h$ and $n_k = d_{k-1}/d_k$ for $k = 1, \ldots, h$. Then for every $a \in \mathbb{Z}d_h$ we have Bézout's relation

 $a = a_0 v_0 + a_1 v_1 + \dots + a_h v_h$

where $a_0, a_1, \ldots, a_h \in \mathbb{Z}$ and $0 \leq a_k < n_k$ for $k = 1, \ldots, h$. The sequence (a_0, \ldots, a_h) is unique.

Proof. Existence. If h = 0 the lemma is obvious. Suppose that h > 0 and that the lemma is true for h - 1. Since $d_h = \gcd(d_{h-1}, v_h)$ we can write for every $a \in (d_h)\mathbb{Z}$: $a = a'd_{h-1} + a''v_h$ with $a', a'' \in \mathbb{Z}$. For any integer l we have $a = (a' - lv_h)d_{h-1} + (a'' + ld_{h-1})v_h$. Thus we can take $a'' \ge 0$. Dividing a'' by $n_h = d_{h-1}/d_h$ we get $a'' = n_h a''' + a_h$ with $0 \le a_h < n_h$. Therefore $a = a'd_{h-1} + (n_h a''' + a_h)v_h = (a' + \frac{v_h}{d_h}a''')d_{h-1} + a_hv_h$. By induction hypothesis we get $(a' + \frac{v_h}{d_h}a''')d_{h-1} = a_0v_0 + \cdots + a_{h-1}v_{h-1}$ with $0 \le a_k < n_k$ for $0 \le k \le h - 1$ and we are done.

Uniqueness. Suppose that $a_0v_0 + \cdots + a_hv_h = a'_0v_0 + \cdots + a'_hv_h$ with $0 \leq a_k, a'_k < n_k$ for k > 0. Let $a_h \leq a'_h$. Then $(a'_h - a_h)v_h \equiv 0 \mod (v_0, \ldots, v_{h-1})\mathbb{Z}$ and $(a'_h - a_h)v_h \equiv 0 \pmod{d_{h-1}}$ which implies $(a'_h - a_h)\frac{v_h}{d_h} \equiv 0 \pmod{n_h}$. Therefore $a'_h - a_h \equiv 0 \pmod{n_h}$ and $a'_h - a_h = 0$ since $0 \leq a'_h - a_h < n_h$. Uniqueness follows by induction

In what follows we assume that $d_h = \gcd(v_0, \dots, v_h) = 1$. We set

$$c = \sum_{k=1}^{h} (n_k - 1)v_k - v_0 + 1$$

and call c the virtual conductor of the sequence (v_0, \ldots, v_h) .

Property 1.2. Let c be the virtual conductor of the sequence (v_0, \ldots, v_h) . Then $c \ge 0$ and c = 0 if and only if $v_k = d_k$ for all $k = 1, \ldots, h$ such that $n_k > 1$.

Proof. Obviously we have $v_k \ge d_k$ for $k = 1, \ldots, h$. Therefore we get

$$c = \sum_{k=1}^{h} (n_k - 1)v_k - v_0 + 1 \ge \sum_{k=1}^{h} (n_k - 1)d_k - d_0 + 1 = 0.$$

Clearly c = 0 if and only if $v_k = d_k$ for all k such that $n_k > 1$

Property 1.3. (Brauer) With the notation introduced above, if a is an integer, $a \ge c$ then $a \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_h$.

Proof. Let's write Bézouts relation for the integer $a: a = a_0v_0 + a_1v_1 + \dots + a_hv_h$ where $0 \leq a_k \leq n_k - 1$ for $k = 1, \dots, h$. Then $a_0v_0 = a - \sum_{k=1}^h a_kv_k \geq c - \sum_{k=1}^h a_kv_k = -v_0 + 1 + \sum_{k=1}^h (n_k - 1 - a_k)v_k \geq -v_0 + 1$. Consequently, we get $a_0 \geq \frac{-v_0+1}{v_0} = -1 + \frac{1}{v_0} > -1$ which implies $a_0 \geq 0$

Property 1.4. Suppose that $lv_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ for an integer $l \ge 0$. Then $l \equiv 0 \pmod{n_k}$.

Proof. If $lv_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ then $lv_k \equiv 0 \pmod{d_{k-1}}$ and $l(\frac{v_k}{d_k}) \equiv 0 \pmod{n_k}$. Since $\frac{v_k}{d_k}$ and n_k are coprime we get $l \equiv 0 \pmod{n_k} \blacksquare$

Definition 1.5. A sequence (v_0, \ldots, v_h) is nice if $n_k v_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ for $k = 1, \ldots, h$.

Note that $n_1v_1 = (\frac{v_1}{d_1})v_0 \in \mathbb{N}v_0$. Hence the sequence (v_0, v_1) is nice. The sequence (6, 7, 8) is not nice but the sequence (6, 9, 7) is.

Property 1.6. Let (v_0, \ldots, v_h) be a nice sequence. Then for every $k \in \{1, \ldots, h\}$: $v_k \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ if and only if $n_k > 1$.

Proof. If $v_k \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ then $n_k > 1$ by the definition of nice sequence. If $n_k > 1$ then $v_k \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ by Property 1.4

Proposition 1.7. Let (v_0, \ldots, v_h) be a nice sequence, c the virtual conductor of (v_0, \ldots, v_h) . Set $G = \mathbb{N}v_0 + \cdots + \mathbb{N}v_h$. Then

- (i) if $a \in \mathbb{N}v_0 + \dots + \mathbb{N}v_k$ then $a = a_0v_0 + \dots + a_kv_k$ with $0 \leq a_0$ and $0 \leq a_i < n_i$ for $i = 1, \dots, k$.
- (ii) For every $a, b \in \mathbb{Z}$: if a + b = c 1 then exactly one element of the pair (a, b) belongs to G.
- (iii) The virtual conductor c equals the conductor of G i.e. all integers bigger than or equal to c are in G and $c 1 \notin G$.
- (iv) c is an even number and $\#(\mathbb{N} \setminus G) = c/2$.

Proof. (i) If k = 0 the assertion is obvious. Suppose that k > 0 and that the property is true for k-1. By assumption we have $a = q_0v_0 + \cdots + q_kv_k$ with $q_i \ge 0$ for $i = 0, \ldots, k$. By the Euclidean division of q_k by n_k we get $q_k = q'_kn_k + a_k$ with $0 \le a_k < n_k$. Thus $a = q_0v_0 + \cdots + q_{k-1}v_{k-1} + q'_kn_kv_k + a_kv_k = a' + a_kv_k$ where $0 \le a_k < n_k$ and $a' \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ since $n_kv_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$. Use the induction hypothesis.

(ii) Take two integers $a, b \in \mathbb{Z}$ such that a + b = c - 1. Let us write Bézout's relation $a = a_0v_0 + a_1v_1 + \cdots + a_hv_h$ where $a_0 \in \mathbb{Z}$ and $0 \leq a_i < n_i$ for $i = 1, \ldots, k$. Then by the definition of c we get $b = c - 1 - a = -v_0 + \sum_{k=1}^{h} (n_k - 1)v_k - a_0v_0 - \sum_{k=1}^{h} a_kv_k = -(a_0 + 1)v_0 + \sum_{k=1}^{h} (n_k - 1 - a_k)v_k$. This is a Bézout's relation. To finish the proof it suffices to remark that exactly one element of the pair $(a_0, -a_0 - 1)$ is greater than or equal to zero.

(iii) By Property 1.3 all integers $\geq c$ are in G. Since (c-1) + 0 = c - 1 and $0 \in G$ we have $c - 1 \notin G$ by (ii).

(iv) The mapping $[0, c-1] \cap G \ni a \mapsto c-1-a \in [0, c-1] \cap (\mathbb{N} \setminus G)$ is bijective. Therefore we have $2 \cdot \#([0, c-1] \cap G) = c$ and (iv) follows

Proposition 1.8. Let (v_0, \ldots, v_h) be a sequence of positive integers such that $n_k v_k \leq v_{k+1}$ for $k = 1, \ldots, h-1$. Then (v_0, \ldots, v_k) is a nice sequence.

Proof. Fix $k \in \{1, \ldots, h-1\}$. Since $n_k v_k = d_{k-1} \frac{v_k}{d_k} \equiv 0 \pmod{d_{k-1}}$ by Lemma 1.1 we can write Bézout's identity

$$n_k v_k = a_0 v_0 + a_1 v_1 + \dots + a_{k-1} v_{k-1}$$

where $a_0 \in \mathbb{Z}$ and $0 \leq a_i < n_i$ for $i = 1, \dots, k-1$. Therefore, we get $a_0v_0 = n_kv_k - a_1v_1 - \dots - a_{k-1}v_{k-1} \ge n_kv_k - (n_1 - 1)v_1 - \dots - (n_{k-1} - 1)v_{k-1} = n_kv_k - [(n_1v_1 - v_1) + \dots + (n_{k-1}v_{k-1} - v_{k-1})] > n_kv_k - [(v_2 - v_1) + \dots + (v_k - v_{k-1})] = n_kv_k - v_k + v_1 > 0$ which implies $a_0 > 0$

Remark 1.9. In fact we have proved the following property, stronger than " (v_0, \ldots, v_h) is nice": if $n_k v_k = a_0 v_0 + a_1 v_1 + \cdots + a_{k-1} v_{k-1}$ is a Bézout's relation then $a_0 > 0$.

2. Semigroups of natural numbers

A subset G of N closed under addition and containing 0 is called a *semigroup*. In what follows we assume $G \neq \{0\}$. A semigroup is numerical if gcd(G) = 1.

Lemma 2.1. Let G be a semigroup and let $v_0 \in G$, $v_0 > 0$. If $G \neq \mathbb{N}v_0$ then there exists a unique sequence v_1, \ldots, v_h such that

(i) $G \neq \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ and $v_k = \min(G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}))$ for $k = 1, \dots, h$

(ii) $G = \mathbb{N}v_0 + \cdots + \mathbb{N}v_h$.

Proof. Observe that if v_1, \ldots, v_k satisfy conditions (i) then $v_k \neq v_l \pmod{v_0}$ for l < k. Indeed, from $v_k = v_l \pmod{v_0}$ we get $v_k = v_l + qv_0$ with $q \in \mathbb{N}$ which implies $v_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ since l < k. Therefore the conditions (i) define a finite sequence. It suffices to take as (v_1, \ldots, v_h) the longest sequence with property (i)

We call the sequence (v_0, v_1, \ldots, v_h) the v_0 -minimal system of generators of G (if $G = \mathbb{N}v_0$ then the v_0 -minimal system of generators is (v_0)). If $v_0 = \min(G \setminus \{0\})$ then we say that (v_0, v_1, \ldots, v_h) is the minimal sequence of generators of G. Clearly $\gcd G = \gcd(v_0, v_1, \ldots, v_h) = d_h (d_h = 1 \text{ if } G \text{ is a numerical semigroup}).$

Lemma 2.2. Let (v_0, \ldots, v_h) be a v_0 -minimal system of generators of the semigroup G. Then

- (i) $v_1 < \cdots < v_h$,
- (ii) $\min(G \setminus \{0\}) = \min(v_0, v_1),$
- (iii) if $v \in G$ and $v < v_k$ for $a \ k > 0$ then $v \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$,
- (iv) each v_k , k > 0 is an irreducible element of G, that is v_k is not a sum of two nonzero elements of the semigroup G.

Proof. (i) We have $G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-2}) \supset G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1})$ for $k \ge 2$. Since $v_k \in G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1})$ by the definition of v_k , we have $v_k \in G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-2})$ and $v_k \ge \min(G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-2})) = v_{k-1}$ for $k \ge 2$. Thus we get $v_{k-1} < v_k$ since $v_{k-1} \ne v_k$.

(ii) $\min(G \setminus \{0\}) = \min(v_0, v_1, \dots, v_h) = \min(v_0, v_1)$ by (i).

(iii) If $v \in G \setminus (\mathbb{N}v_0 + \dots + \mathbb{N}v_{k-1})$ then $v = q_0v_0 + \dots + q_kv_k + \dots + q_hv_h$ with $q_l \neq 0$ for an index $l \ge k$. Thus $v \ge q_lv_l \ge v_k$ which proves (iii).

(iv) Suppose that $v_k = v' + v''$ with nonzero $v', v'' \in G$. Therefore $v', v'' < v_k$ and $v_k = v' + v'' \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ by (iii). This contradicts the definition of $v_k \blacksquare$

Lemma 2.3. Let (v_0, \ldots, v_h) be a sequence of positive integers such that $v_1 < \cdots < v_h$ and $v_k \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ for $k = 1, \ldots, h$. Then (v_0, \ldots, v_h) is a v_0 -minimal system of generators of the semigroup $G = \mathbb{N}v_0 + \cdots + \mathbb{N}v_h$.

Proof. We check like in the proof of Lemma 2.2 (iii) that $v_k = \min(G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}))$ for $k = 1, \ldots, h$

Proposition 2.4. Let G be a numerical semigroup with v_0 -minimal system of generators (v_0, \ldots, v_h) . Suppose that $n_k v_k \leq v_{k+1}$ for $k = 1, \ldots, k-1$. Then

(i) $n_k > 1$ for k = 1, ..., h,

- (ii) $n_k v_k < v_{k+1}$ for $k = 1, \ldots, h-1$,
- (iii) the minimal system of generators of G is (v_0, v_1, \ldots, v_h) if $v_0 < v_1$, (v_1, v_0, \ldots, v_h) if $v_1 < v_0$ and $v_0 \not\equiv 0 \pmod{v_1}$, (v_1, \ldots, v_h) if $v_1 < v_0$ and $v_0 \equiv 0 \pmod{v_1}$.

Proof. By Proposition 1.8 the sequence (v_0, v_1, \ldots, v_h) is nice. Since $v_{k+1} \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_k$ we have $n_k > 1$. Property (ii) is obvious. To check (iii) observe that the inequality $n_1v_1 < v_2$ implies $v_0 < v_2$ since $n_1v_1 = v_0(\frac{v_1}{d_1})$ and recall that by Lemma 2.2 (ii) we have $\min(G \setminus \{0\}) = \min(v_0, v_1) \blacksquare$

3. Characteristic sequences

A sequence of positive integers (r_0, \ldots, r_h) is said to be a *characteristic sequence* if it satisfies the following two axioms:

- 1. Set $d_k = \gcd(r_0, \ldots, r_k)$ for $0 \le k \le h$. Then $d_k > d_{k+1}$ for $0 \le k < h$ and $d_h = 1$.
- 2. Set $n_k = d_{k-1}/d_k$ for k = 1, ..., h. Then $n_k r_k < r_{k+1}$ for $1 \le k < h$.

We call r_0 the initial term of the characteristic sequence (r_0, \ldots, r_h) . Let $G = \mathbb{N}r_0 + \cdots + \mathbb{N}r_h$ be the semigroup generated by a characteristic sequence. Then (r_0, \ldots, r_h) is a r_0 -minimal system of generators of G (cf. Lemma 2.3). In particular G and r_0 determine the sequence (r_0, \ldots, r_h) .

Proposition 3.1. Let G be the semigroup generated by a characteristic sequence (r_0, \ldots, r_h) . Then the conductor c of G equals

$$c = \sum_{k=1}^{h} (n_k - 1)r_k - r_0 + 1$$
.

The semigroup G is symmetric: if $a, b \in \mathbb{Z}$ and a + b = c - 1 then exactly one element of the pair (a, b) belongs to G.

Proof. The proposition follows from Propositions 1.7 and 1.8.

A characteristic sequence (r_0, \ldots, r_h) has the Abhyankar-Moh property (in short: the AM property) if it satisfies the inequality

$$d_{h-1}r_h < r_0^2$$
.

For every such sequence we define the associated sequence $(\delta_0, \ldots, \delta_h)$ by putting

$$\delta_0 = r_0, \quad \delta_k = \frac{r_0^2}{d_{k-1}} - r_k \text{ for } 1 \leq k \leq h.$$

Lemma 3.2. The associated sequence $(\delta_0, \ldots, \delta_h)$ satisfies the following properties

- 1) $\delta_k > 0$ and $gcd(\delta_0, \ldots, \delta_k) = d_k$ for $0 \le k \le h$,
- 2) $n_k \delta_k > \delta_{k+1}$ for $1 \leq k < h$.
- 3) If γ is the virtual conductor of the sequence $(\delta_0, \ldots, \delta_h)$ then $\gamma = (r_0 1)(r_0 2) c$.

Proof. We have $\delta_k = \frac{r_0^2 - d_{k-1}r_k}{d_{k-1}} \ge \frac{r_0^2 - d_{h-1}r_h}{d_{k-1}} > 0$. The second part of property 1) follows by induction on k. Since $\gcd(d_{k-1}, \delta_k) = d_k$ we get

$$gcd(\delta_0,\ldots,\delta_k) = gcd(gcd(\delta_0,\ldots,\delta_{k-1}),\delta_k) = gcd(d_{k-1},\delta_k) = d_k$$

To check 2) it suffices to observe that the inequalities $n_k \delta_k > \delta_{k+1}$ and $n_k r_k < r_{k+1}$ are equivalent. Recall that $\gamma = \sum_{k=1}^{h} (n_k - 1)\delta_k - \delta_0 + 1$. Thus we get

$$\gamma = \sum_{k=1}^{h} (n_k - 1) \left(\frac{r_0^2}{d_{k-1}} - r_k \right) - r_0 + 1 = \sum_{k=1}^{h} (n_k - 1) \frac{r_0^2}{d_{k-1}} - r_0 + 1 - \sum_{k=1}^{h} (n_k - 1) r_k$$
$$= (r_0 - 1)^2 - \sum_{k=1}^{h} (n_k - 1) r_k = (r_0 - 1)(r_0 - 2) - c \bullet$$

Proposition 3.3. Suppose that (r_0, \ldots, r_h) is a characteristic sequence with the AM property. Let c be the conductor of the semigroup $\mathbb{N}r_0 + \cdots + \mathbb{N}r_h$. Then $c \leq (r_0 - 1)(r_0 - 2)$ with equality if and only if $r_k = \frac{r_0^2}{d_{k-1}} - d_k$ for $1 \leq k \leq h$.

Proof. By the third part of Lemma 3.2 $c = (r_0 - 1)(r_0 - 2) - \gamma \leq (r_0 - 1)(r_0 - 2)$ since $\gamma \geq 0$ by Property 1.2. The equality $c = (r_0 - 1)(r_0 - 2)$ is equivalent to $\gamma = 0$ which again by Property 1.2 is equivalent to $\delta_k = d_k$. Hence we get $r_k = \frac{r_0^2}{d_{k-1}} - d_k$ for $1 \leq k \leq h$

Lemma 3.2 and Proposition 3.3 are due to [B-GB-P].

Remark 3.4. Although every characteristic sequence (r_0, \ldots, r_h) is nice (see Proposition 1.8) the sequence $(\delta_0, \ldots, \delta_h)$ associated with an Abhyankar-Moh sequence is not nice, in general. The following example is due to J. Gwoździewicz: $(r_0, r_1, r_2) = (10, 4, 49)$ has the AM property but the associated sequence $(\delta_0, \delta_1, \delta_2) = (10, 6, 1)$ is not nice. See also the Barrolleta's example given in [B-GB-P].

4. Semigroups of plane branches

Let \mathbb{K} be an algebraically closed field of arbitrary characteristic and let $\mathbb{K}[[x, y]]$ be the ring of formal power series in two wariables x, y with coefficients in \mathbb{K} . For any $f, g \in \mathbb{K}[[x, y]]$ we define the intersection multiplicity $i_0(f, g)$ by putting

$$i_0(f,g) = \dim_{\mathbb{K}} \mathbb{K}[[x,y]] / (f,g)$$

If f and g are without constant term then $i_0(f,g) < +\infty$ if and only if f, g have no common factor h, h(0,0) = 0. For any irreducible power series $f \in \mathbb{K}[[x,y]]$ we put

 $G(f) = \{i_0(f,g) : g \text{ runs over all power series such that } g \not\equiv 0 \pmod{f} \}.$

Clearly G(f) is a semigroup. We call G(f) the semigroup associated with the branch f = 0.

46

Theorem 4.1. (Bresinsky-Angermüller Semigroup Theorem)

- 1. Let f = f(x, y) be an irreducible power series. Suppose that $n = i_0(f, x) < +\infty$. Then the semigroup G(f) of the branch f = 0 is generated by a characteristic sequence with the initial term n.
- 2. Let $G \subset \mathbb{N}$ be a semigroup generated by a characteristic sequence with the initial term n > 0. Then there exists an irreducible power series f = f(x, y) such that $i_0(f, x) = n$ and G(f) = G.

A characteristic-blind proof of the above theorem is given in [GB-P2012].

Two branches f = 0 and g = 0 are equisingular if and only if G(f) = G(g). The Abhyankar-Moh inequality appears when studing the plane curves with one branch at infinity (see, for example [B-GB-P]). Here we present a characterization of the AM inequality in terms of pencils of plane local curves.

Theorem 4.2. Let $f \in \mathbb{K}[[x, y]]$ be an irreducible power series, $n = i_0(f, x) < +\infty$ and let $G(f) = \mathbb{N}r_0 + \cdots + \mathbb{N}r_h$ where (r_0, \ldots, r_h) is a characteristic sequence with the initial term $r_0 = n$. Suppose that char $\mathbb{K} = 0$. Let $f_t = f - tX^n$. Then the following two conditions are equivalent:

- (AM) $d_{h-1}r_h < n^2$,
 - (E) the pencil $(f_t : t \in \mathbb{K})$ is equisingular i.e. f_t are irreducible and $G(f_t) = G(f)$ for $t \in \mathbb{K}$.

Proof. See [GB-P2004], Section 5, p. 124.

Let $F(x,y) = y^n + a_1(x)y^{n-1} + \cdots + a_n(x) \in \mathbb{K}[x,y]$ be a polynomial of degree n > 1, irreducible in $\mathbb{K}[x,y]$. Assume, after possibly a change of variables, that $\deg a_k(x) < k$ for $k = 1, \ldots, n$. Hence $F_0(x_0, y_0) = y_0^n + x_0 a_1(\frac{1}{x_0})y_0^{n-1} + \cdots + x_0^n a_n(\frac{1}{x_0}) \in \mathbb{K}[x_0, y_0]$ is a distinguished polynomial. In what follows we assume that the polynomial F(x, y) is *irreducible at infinity* i.e. $F_0(x_0, y_0)$ is irreducible in $\mathbb{K}[[x_0, y_0]]$. Given a polynomial $G(x, y) \in \mathbb{K}[x, y]$, we set

$$I(F,G) = \dim_{\mathbb{K}} \mathbb{K}[x,y] / (F,G)$$

and call

 $\{I(F,G): G \text{ runs over all polynomials such that } G \not\equiv 0 \pmod{F}\}$

the degree semigroup associated with the affine curve F = 0.

Theorem 4.3. (Abhyankar-Moh Degree Semigroup Theorem)

Suppose that \mathbb{K} is an algebraically closed field of characteristic zero and keep the notation and assumption introduced above. Then the n-minimal system of generators of the semigroup $G(F_0)$ has the AM property, the associated sequence $(\delta_0, \ldots, \delta_h)$ is nice and generates the degree semigroup of the affine curve F = 0.

Proof. See [R].

For more information the reader is referred to [B-GB-P] and [RL].

LITERATURA

- [A-M] S. S. Abhyankar, T. T. Moh, Embeddings of the line in the plane, J. reine angew. Math. 276 (1975), 148–166.
- [An] G. Angermüller, Die Wertehalbgruppe einer ebenen irreduziblen algebroiden Kurve, Math. Z. 153 (1977), 267–282.
- [B-GB-P] R. D. Barrolleta, E. R. García Barroso, A. Płoski, On the Abhyankar-Moh inequality, arXiv: 1407.0176
- [GB-P2015] E. R. García Barroso, A. Płoski, An approach to plane algebroid branches, Rev. Mat. Complut. (2015) 28, 227–252.
- [GB-P2012] E. R. García Barroso, A. Płoski, An approach to plane algebroid branches, arXiv: 1208.0913, 4 Aug 2012
- [GB-P2004] E. R. García Barroso, A. Płoski, Pinceaux de courbes planes et invariants polaires, Ann. Pol. Math. 82 (2004), 113–128.
- [P1] A. Płoski, Introduction to the local theory of plane algebraic curves, in Analytic and algebraic geometry Łódź University Press 2013, 115-134 (eds T. Krasiński and St. Spodzieja)
- [P2] A. Płoski, Plane algebroid branches after R. Apéry, Materiały na XXXV Konferencję z Geometrii Analitycznej i Algebraicznej, Łódź 2014, 35–44.
- [RL] A. Reguera López, Semigroups and clusters at infinity, Algebraic geometry and singularities (La Rábida, 1991), 339–374, Progr. Math., 134, Birkhäuser, Basel, 1996.
- [R] P. Russel, Hamburger-Noether expansions and approximate roots of polynomials, Manuscripta Math. 31 (1980), no. 1-3, 25–95.

PÓŁGRUPY NUMERYCZNE

Półgrupą numeryczną nazywamy półgrupę liczb naturalnych $G \subset \mathbb{N}$ taką, że NWP(G) = 1. Takie półgrupy występują w teorii osobliwości. W tym artykule opisujemy za Angermüllerem półgrupy stowarzyszone z osobliwościami krzywych płaskich a następnie opisujemy półgrupy, których ciągi generatorów spełniają nierówność Abhyankara-Moha, podstawową w teorii krzywych płaskich o jednej gałęzi w nieskończoności.

DEPARTMENT OF MATHEMATICS KIELCE UNIVERSITY OF TECHNOLOGY AL. 1000 L PP 7 25-314 KIELCE, POLAND E-MAIL: matap@tu.kielce.pl

Lódź, 5 – 9 stycznia 2015 r.