MATERIAŁY NA XXXVI KONFERENCJĘ Z GEOMETRII ANALITYCZNEJ I ALGEBRAICZNEJ

2015 Łódź str. 41

NUMERICAL SEMIGROUPS

Arkadiusz Płoski (Kielce)

This paper is intended to give proofs of the results stated without proof in [GB-P2015]. We do this in Sections 1 and 2 following the approach due to Angermüller [An] (see also [GB-P2012]). In Section 3 we consider characteristic sequences satisfying the Abhyankar-Moh inequality which appears when studying the plane curves with one branch at infinity (see [A-M], [B-GB-P]).

In Section 4 we present some applications of numerical semigroups to plane curve singularities. In all the paper we denote by N the set of non-negative integers. If $a_0, \ldots, a_m \in \mathbb{N}$ then $\mathbb{N}a_0 + \cdots + \mathbb{N}a_m$ stands for the set of all integers of the form $q_0a_0 + \cdots + q_ma_m$, where $q_0, \ldots, q_m \in \mathbb{N}$. If $S \subset \mathbb{N}, S \neq \{0\}$ then $gcd(S)$ denotes the greatest common divisor of all integers belonging to *S*.

1. Nice sequences

Let us begin with the following lemma.

Lemma 1.1. Let (v_0, \ldots, v_h) be a sequence of positive integers. Set $d_k =$ $gcd(v_0, \ldots, v_k)$ *for* $k = 0, \ldots, h$ *and* $n_k = d_{k-1}/d_k$ *for* $k = 1, \ldots, h$ *. Then for every* $a \in \mathbb{Z}$ *d_h we have Bézout's relation*

 $a = a_0v_0 + a_1v_1 + \cdots + a_hv_h$

where $a_0, a_1, \ldots, a_h \in \mathbb{Z}$ and $0 \leq a_k \leq n_k$ for $k = 1, \ldots, h$ *. The sequence* (a_0, \ldots, a_h) *is unique.*

Proof. Existence. If *h* = 0 the lemma is obvious. Suppose that *h >* 0 and that the lemma is true for $h-1$. Since $d_h = \gcd(d_{h-1}, v_h)$ we can write for every $a \in (d_h)\mathbb{Z}$: $a = a'd_{h-1} + a''v_h$ with $a', a'' \in \mathbb{Z}$. For any integer l we have $a = (a' - a')$ $\int w_h d_{h-1} + (a'' + d_{h-1})v_h$. Thus we can take $a'' \ge 0$. Dividing a'' by $n_h = d_{h-1}/d_h$ we get $a'' = n_h a''' + a_h$ with $0 \le a_h < n_h$. Therefore $a = a'd_{h-1} + (n_h a''' + a_h)v_h =$ $(a' + \frac{v_h}{d_h}a''')d_{h-1} + a_h v_h$. By induction hypothesis we get $(a' + \frac{v_h}{d_h}a''')d_{h-1} = a_0v_0 +$ $\cdots + a_{h-1}v_{h-1}$ with $0 \le a_k < n_k$ for $0 \le k \le h-1$ and we are done.

Uniqueness. Suppose that $a_0v_0 + \cdots + a_hv_h = a'_0v_0 + \cdots + a'_hv_h$ with $0 \le$ $a_k, a'_k < n_k$ for $k > 0$. Let $a_h \leq a'_h$. Then $(a'_h - a_h)v_h \equiv 0 \mod (v_0, \ldots, v_{h-1})\mathbb{Z}$ and $(a'_h - a_h)v_h \equiv 0 \pmod{d_{h-1}}$ which implies $(a'_h - a_h)\frac{v_h}{d_h} \equiv 0 \pmod{n_h}$. Therefore $a'_h - a_h \equiv 0 \pmod{n_h}$ and $a'_h - a_h = 0$ since $0 \leq a'_h - a_h < n_h$. Uniqueness follows by induction

In what follows we assume that $d_h = \gcd(v_0, \ldots, v_h) = 1$. We set

$$
c = \sum_{k=1}^{h} (n_k - 1)v_k - v_0 + 1
$$

and call *c* the virtual conductor of the sequence (v_0, \ldots, v_h) .

Property 1.2. Let c be the virtual conductor of the sequence (v_0, \ldots, v_h) . Then $c \geq 0$ and $c = 0$ if and only if $v_k = d_k$ for all $k = 1, \ldots, h$ such that $n_k > 1$.

Proof. Obviously we have $v_k \geqslant d_k$ for $k = 1, \ldots, h$. Therefore we get

$$
c = \sum_{k=1}^{h} (n_k - 1)v_k - v_0 + 1 \geqslant \sum_{k=1}^{h} (n_k - 1)d_k - d_0 + 1 = 0.
$$

Clearly $c = 0$ if and only if $v_k = d_k$ for all k such that $n_k > 1$

Property 1.3. (Brauer) *With the notation introduced above, if a is an integer,* $a \geqslant c$ *then* $a \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_h$.

Proof. Let's write Bézouts relation for the integer *a*: $a = a_0v_0 + a_1v_1 + \cdots + a_hv_h$ where $0 \le a_k \le n_k - 1$ for $k = 1, ..., h$. Then $a_0v_0 = a - \sum_{k=1}^h a_kv_k \ge c \sum_{k=1}^{h} a_k v_k = -v_0 + 1 + \sum_{k=1}^{h} (n_k - 1 - a_k) v_k \geq -v_0 + 1$. Consequently, we get $a_0 \ge \frac{-v_0+1}{v_0} = -1 + \frac{1}{v_0} > -1$ which implies $a_0 \ge 0$

Property 1.4. *Suppose that* $lv_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ *for an integer* $l \geq 0$ *. Then* $l \equiv 0 \pmod{n_k}$.

Proof. If $lv_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ then $lv_k \equiv 0 \pmod{d_{k-1}}$ and $l(\frac{v_k}{d_k}) \equiv$ 0 (mod n_k). Since $\frac{v_k}{d_k}$ and n_k are coprime we get $l \equiv 0 \pmod{n_k}$

Definition 1.5. A sequence (v_0, \ldots, v_h) is nice if $n_k v_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ for $k = 1, \ldots, h$.

Note that $n_1v_1 = \left(\frac{v_1}{d_1}\right)v_0 \in \mathbb{N}v_0$. Hence the sequence (v_0, v_1) is nice. The sequence $(6, 7, 8)$ is not nice but the sequence $(6, 9, 7)$ is.

Property 1.6. *Let* (v_0, \ldots, v_h) *be a nice sequence. Then for every* $k \in \{1, \ldots, h\}$ *:* $v_k \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ *if and only if* $n_k > 1$.

Proof. If $v_k \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ then $n_k > 1$ by the definition of nice sequence. If n_k > 1 then $v_k \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ by Property 1.4 ■

Proposition 1.7. Let (v_0, \ldots, v_h) be a nice sequence, c the virtual conductor of (v_0, \ldots, v_h) *. Set* $G = \mathbb{N}v_0 + \cdots + \mathbb{N}v_h$ *. Then*

- (i) if $a \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_k$ then $a = a_0v_0 + \cdots + a_kv_k$ with $0 \leq a_0$ and $0 \leq a_i < n_i$ *for* $i = 1, ..., k$.
- (ii) *For every* $a, b \in \mathbb{Z}$ *:* if $a + b = c 1$ then exactly one element of the pair (a, b) *belongs to G.*
- (iii) *The virtual conductor c equals the conductor of G i.e. all integers bigger than or equal to c are in* G *and* $c - 1 \notin G$ *.*
- (iv) *c* is an even number and $\#(\mathbb{N} \setminus G) = c/2$.

Proof. (i) If $k = 0$ the assertion is obvious. Suppose that $k > 0$ and that the property is true for $k - 1$. By assumption we have $a = q_0v_0 + \cdots + q_kv_k$ with $q_i \geq 0$ for $i = 0, \ldots, k$. By the Euclidean division of q_k by n_k we get $q_k = q'_k n_k + a_k$ with $0 \le a_k < n_k$. Thus $a = q_0v_0 + \cdots + q_{k-1}v_{k-1} + q'_k n_k v_k + a_kv_k = a' + a_kv_k$ where $0 \leq a_k < n_k$ and $a' \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ since $n_k v_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$. Use the induction hypothesis.

(ii) Take two integers $a, b \in \mathbb{Z}$ such that $a + b = c - 1$. Let us write Bézout's relation $a = a_0v_0 + a_1v_1 + \cdots + a_hv_h$ where $a_0 \in \mathbb{Z}$ and $0 \leq a_i \leq n_i$ for $i = 1, \ldots, k$. Then by the definition of *c* we get $b = c - 1 - a = -v_0 + \sum_{k=1}^{h} (n_k - 1)v_k - a_0v_0 \sum_{k=1}^{h} a_k v_k = -(a_0 + 1)v_0 + \sum_{k=1}^{h} (n_k - 1 - a_k)v_k$. This is a Bézout's relation. To finish the proof it suffices to remark that exactly one element of the pair $(a_0, -a_0-1)$ is greater than or equal to zero.

(iii) By Property 1.3 all integers $\geq c$ are in *G*. Since $(c-1) + 0 = c-1$ and $0 \in G$ we have $c - 1 \notin G$ by (ii).

(iv) The mapping $[0, c-1] \cap G \ni a \mapsto c-1-a \in [0, c-1] \cap (\mathbb{N} \setminus G)$ is bijective. Therefore we have $2 \cdot \#([0, c-1] \cap G) = c$ and (iv) follows \blacksquare

Proposition 1.8. Let (v_0, \ldots, v_h) be a sequence of positive integers such that $n_k v_k \leq v_{k+1}$ *for* $k = 1, ..., h - 1$ *. Then* $(v_0, ..., v_k)$ *is a nice sequence.*

Proof. Fix $k \in \{1, ..., h-1\}$. Since $n_k v_k = d_{k-1} \frac{v_k}{d_k} \equiv 0 \pmod{d_{k-1}}$ by Lemma 1.1 we can write Bézout's identity

$$
n_k v_k = a_0 v_0 + a_1 v_1 + \dots + a_{k-1} v_{k-1}
$$

where $a_0 \in \mathbb{Z}$ and $0 \leq a_i \leq n_i$ for $i = 1, \ldots, k-1$. Therefore, we get $a_0v_0 =$ $n_k v_k - a_1 v_1 - \cdots - a_{k-1} v_{k-1} \geqslant n_k v_k - (n_1 - 1)v_1 - \cdots - (n_{k-1} - 1)v_{k-1} =$ $n_kv_k - [(n_1v_1-v_1)+\cdots+(n_{k-1}v_{k-1}-v_{k-1})] > n_kv_k - [(v_2-v_1)+\cdots+(v_k-v_{k-1})] =$ $n_k v_k - v_k + v_1 > 0$ which implies $a_0 > 0$

Remark 1.9. In fact we have proved the following property, stronger than $((v_0, \ldots, v_h))$ is nice": if $n_k v_k = a_0 v_0 + a_1 v_1 + \cdots + a_{k-1} v_{k-1}$ is a Bézout's relation then $a_0 > 0$.

A subset *G* of N closed under addition and containing 0 is called a *semigroup*. In what follows we assume $G \neq \{0\}$. A semigroup is numerical if $gcd(G) = 1$.

Lemma 2.1. *Let G be a semigroup and let* $v_0 \in G$ *,* $v_0 > 0$ *. If* $G \neq \mathbb{N}v_0$ *then there exists a unique sequence v*1*, . . . , v^h such that*

(i) $G \neq \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ and $v_k = \min(G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}))$ for $k = 1, \ldots, h$

(ii) $G = \mathbb{N}v_0 + \cdots + \mathbb{N}v_h$.

Proof. Observe that if v_1, \ldots, v_k satisfy conditions (i) then $v_k \neq v_l \pmod{v_0}$ for *l* < *k*. Indeed, from $v_k = v_l \pmod{v_0}$ we get $v_k = v_l + qv_0$ with $q \in \mathbb{N}$ which implies $v_k \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ since $l \leq k$. Therefore the conditions (i) define a finite sequence. It suffices to take as (v_1, \ldots, v_h) the longest sequence with property (i)

We call the sequence (v_0, v_1, \ldots, v_h) the v_0 -*minimal system of generators of G* (if $G = \mathbb{N}v_0$ then the *v*₀-minimal system of generators is (v_0)). If $v_0 = \min(G \setminus \{0\})$ then we say that (v_0, v_1, \ldots, v_h) is the *minimal sequence of generators of G*. Clearly $\gcd G = \gcd(v_0, v_1, \ldots, v_h) = d_h$ ($d_h = 1$ if *G* is a numerical semigroup).

Lemma 2.2. Let (v_0, \ldots, v_h) be a v_0 -minimal system of generators of the semi*group G. Then*

- (i) $v_1 < \cdots < v_h$
- (ii) $\min(G \setminus \{0\}) = \min(v_0, v_1)$,
- (iii) *if* $v \in G$ *and* $v < v_k$ *for a* $k > 0$ *then* $v \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$,
- (iv) each v_k , $k > 0$ *is an irreducible element of G*, that is v_k *is not a sum of two nonzero elements of the semigroup G.*

Proof. (i) We have $G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-2}) \supset G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1})$ for $k \geqslant 2$. Since $v_k \in G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1})$ by the definition of v_k , we have $v_k \in$ $G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-2})$ and $v_k \geqslant \min(G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-2})) = v_{k-1}$ for $k \geqslant 2$. Thus we get $v_{k-1} < v_k$ since $v_{k-1} \neq v_k$.

(ii) $\min(G \setminus \{0\}) = \min(v_0, v_1, \ldots, v_h) = \min(v_0, v_1)$ by (i).

(iii) If $v \in G \setminus (\mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1})$ then $v = q_0v_0 + \cdots + q_kv_k + \cdots + q_hv_h$ with $q_l \neq 0$ for an index $l \geq k$. Thus $v \geq q_l v_l \geq v_l \geq v_k$ which proves (iii).

(iv) Suppose that $v_k = v' + v''$ with nonzero $v', v'' \in G$. Therefore $v', v'' < v_k$ and $v_k = v' + v'' \in \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ by (iii). This contradicts the definition of v_k

Lemma 2.3. Let (v_0, \ldots, v_h) be a sequence of positive integers such that $v_1 < \cdots < v_h$ v_h and $v_k \notin \mathbb{N}v_0 + \cdots + \mathbb{N}v_{k-1}$ for $k = 1, \ldots, h$. Then (v_0, \ldots, v_h) is a v_0 -minimal *system of generators of the semigroup* $G = \mathbb{N}v_0 + \cdots + \mathbb{N}v_h$.

Proof. We check like in the proof of Lemma 2.2 (iii) that $v_k = \min(G \setminus (\mathbb{N}v_0 +$ $\dots + \mathbb{N}v_{k-1}$) for $k = 1, \dots, h$ ■

Proposition 2.4. Let G be a numerical semigroup with v_0 -minimal system of *generators* (v_0, \ldots, v_h) *. Suppose that* $n_k v_k \leq v_{k+1}$ *for* $k = 1, \ldots, k-1$ *. Then*

(i) $n_k > 1$ for $k = 1, ..., h$,

- (ii) $n_k v_k < v_{k+1}$ for $k = 1, \ldots, h-1$,
- (iii) the minimal system of generators of *G* is (v_0, v_1, \ldots, v_h) if $v_0 < v_1$, (v_1, v_0, \ldots, v_h) *if* $v_1 < v_0$ and $v_0 \not\equiv 0 \pmod{v_1}$, (v_1, \ldots, v_h) *if* $v_1 < v_0$ $and v_0 \equiv 0 \pmod{v_1}.$

Proof. By Proposition 1.8 the sequence (v_0, v_1, \ldots, v_h) is nice. Since $v_{k+1} \notin$ $\mathbb{N}v_0 + \cdots + \mathbb{N}v_k$ we have $n_k > 1$. Property (ii) is obvious. To check (iii) observe that the inequality $n_1v_1 < v_2$ implies $v_0 < v_2$ since $n_1v_1 = v_0(\frac{v_1}{d_1})$ and recall that by Lemma 2.2 (ii) we have $min(G \setminus \{0\}) = min(v_0, v_1)$

3. CHARACTERISTIC SEQUENCES

A sequence of positive integers (r_0, \ldots, r_h) is said to be a *characteristic sequence* if it satisfies the following two axioms:

- 1. Set $d_k = \gcd(r_0, \ldots, r_k)$ for $0 \leq k \leq h$. Then $d_k > d_{k+1}$ for $0 \leq k \leq h$ and $d_h = 1$.
- 2. Set $n_k = d_{k-1}/d_k$ for $k = 1, ..., h$. Then $n_k r_k < r_{k+1}$ for $1 \leq k < h$.

We call r_0 the initial term of the characteristic sequence (r_0, \ldots, r_h) . Let $G =$ $Nr_0 + \cdots + Nr_h$ be the semigroup generated by a characteristic sequence. Then (r_0, \ldots, r_h) is a r_0 -minimal system of generators of *G* (cf. Lemma 2.3). In particular *G* and r_0 determine the sequence (r_0, \ldots, r_h) .

Proposition 3.1. *Let G be the semigroup generated by a characteristic sequence* (r_0, \ldots, r_h) . Then the conductor *c* of *G* equals

$$
c = \sum_{k=1}^{h} (n_k - 1)r_k - r_0 + 1.
$$

The semigroup G is symmetric: if $a, b \in \mathbb{Z}$ and $a + b = c - 1$ then exactly one *element of the pair* (*a, b*) *belongs to G.*

Proof. The proposition follows from Propositions 1.7 and 1.8.

A characteristic sequence (r_0, \ldots, r_h) has the Abhyankar-Moh property (in short: the AM property) if it satisfies the inequality

$$
d_{h-1}r_h < r_0^2.
$$

For every such sequence we define the associated sequence $(\delta_0, \ldots, \delta_h)$ by putting

$$
\delta_0 = r_0
$$
, $\delta_k = \frac{r_0^2}{d_{k-1}} - r_k$ for $1 \le k \le h$.

Lemma 3.2. *The associated sequence* $(\delta_0, \ldots, \delta_h)$ *satisfies the following properties*

- 1) $\delta_k > 0$ and $\gcd(\delta_0, \ldots, \delta_k) = d_k$ for $0 \leq k \leq h$,
- 2) $n_k \delta_k > \delta_{k+1}$ for $1 \leq k \leq h$.
- 3) *If* γ *is the virtual conductor of the sequence* $(\delta_0, \ldots, \delta_h)$ *then* $\gamma = (r_0 \delta_0)$ $1)(r_0 - 2) - c$.

Proof. We have $\delta_k = \frac{r_0^2 - d_{k-1}r_k}{d}$ $\frac{d_{k-1}r_k}{d_{k-1}} \geqslant \frac{r_0^2 - d_{h-1}r_h}{d_{k-1}}$ $\frac{a_{n-1} \cdot n}{d_{k-1}} > 0$. The second part of property 1) follows by induction on *k*. Since $gcd(d_{k-1}, \delta_k) = d_k$ we get

$$
\gcd(\delta_0,\ldots,\delta_k)=\gcd(\gcd(\delta_0,\ldots,\delta_{k-1}),\delta_k)=\gcd(d_{k-1},\delta_k)=d_k.
$$

To check 2) it suffices to observe that the inequalities $n_k \delta_k > \delta_{k+1}$ and $n_k r_k < r_{k+1}$ are equivalent. Recall that $\gamma = \sum_{k=1}^{h} (n_k - 1)\delta_k - \delta_0 + 1$. Thus we get

$$
\gamma = \sum_{k=1}^{h} (n_k - 1) \left(\frac{r_0^2}{d_{k-1}} - r_k \right) - r_0 + 1 = \sum_{k=1}^{h} (n_k - 1) \frac{r_0^2}{d_{k-1}} - r_0 + 1 - \sum_{k=1}^{h} (n_k - 1) r_k
$$

$$
= (r_0 - 1)^2 - \sum_{k=1}^{h} (n_k - 1) r_k = (r_0 - 1)(r_0 - 2) - c
$$

Proposition 3.3. *Suppose that* (r_0, \ldots, r_h) *is a characteristic sequence with the AM property. Let c be the conductor of the semigroup* $\mathbb{N}r_0 + \cdots + \mathbb{N}r_h$ *. Then* $c \leq$ $(r_0 - 1)(r_0 - 2)$ *with equality if and only if* $r_k = \frac{r_0^2}{d_{k-1}} - d_k$ *for* $1 \leq k \leq h$ *.*

Proof. By the third part of Lemma 3.2 $c = (r_0 - 1)(r_0 - 2) - \gamma \leq (r_0 - 1)(r_0 - 2)$ since $\gamma \geq 0$ by Property 1.2. The equality $c = (r_0 - 1)(r_0 - 2)$ is equivalent to $\gamma = 0$ which again by Property 1.2 is equivalent to $\delta_k = d_k$. Hence we get $r_k = \frac{r_0^2}{d_{k-1}} - d_k$ for $1 \leqslant k \leqslant h$

Lemma 3.2 and Proposition 3.3 are due to [B-GB-P].

Remark 3.4. Although every characteristic sequence (r_0, \ldots, r_h) is nice (see Proposition 1.8) the sequence $(\delta_0, \ldots, \delta_h)$ associated with an Abhyankar-Moh sequence is not nice, in general. The following example is due to J. Gwoździewicz: $(r_0, r_1, r_2) = (10, 4, 49)$ has the AM property but the associated sequence $(\delta_0, \delta_1, \delta_2)$ = (10*,* 6*,* 1) is not nice. See also the Barrolleta's example given in [B-GB-P].

4. Semigroups of plane branches

Let \mathbb{K} be an algebraically closed field of arbitrary characteristic and let $\mathbb{K}[[x, y]]$ be the ring of formal power series in two wariables x, y with coefficients in K. For any $f, g \in \mathbb{K}[[x, y]]$ we define the intersection multiplicity $i_0(f, g)$ by putting

$$
i_0(f,g) = \dim_{\mathbb{K}} \mathbb{K}[[x,y]] \Big/ (f,g) .
$$

If *f* and *g* are without constant term then $i_0(f,g) < +\infty$ if and only if *f, g* have no common factor *h*, $h(0,0) = 0$. For any irreducible power series $f \in \mathbb{K}[[x,y]]$ we put

 $G(f) = \{i_0(f, g) : g \text{ runs over all power series such that } g \not\equiv 0 \pmod{f}\}.$

Clearly $G(f)$ is a semigroup. We call $G(f)$ the semigroup associated with the branch $f = 0.$

46

Theorem 4.1. (Bresinsky-Angermüller Semigroup Theorem)

- 1. Let $f = f(x, y)$ be an irreducible power series. Suppose that $n = i_0(f, x)$ $+\infty$ *. Then the semigroup* $G(f)$ *of the branch* $f = 0$ *is generated by a characteristic sequence with the initial term n.*
- 2. Let $G \subset \mathbb{N}$ be a semigroup generated by a characteristic sequence with the *initial term* $n > 0$ *. Then there exists an irreducible power series* $f = f(x, y)$ *such that* $i_0(f, x) = n$ *and* $G(f) = G$ *.*

A characteristic-blind proof of the above theorem is given in [GB-P2012].

Two branches $f = 0$ and $g = 0$ are equisingular if and only if $G(f) = G(g)$. The Abhyankar-Moh inequality appears when studing the plane curves with one branch at infinity (see, for example [B-GB-P]). Here we present a characterization of the AM inequality in terms of pencils of plane local curves.

Theorem 4.2. *Let* $f \in K[[x, y]]$ *be an irreducible power series,* $n = i_0(f, x) < +\infty$ *and let* $G(f) = \mathbb{N}r_0 + \cdots + \mathbb{N}r_h$ *where* (r_0, \ldots, r_h) *is a characteristic sequence with the initial term* $r_0 = n$ *. Suppose that* char $K = 0$ *. Let* $f_t = f - tX^n$ *. Then the following two conditions are equivalent:*

- (AM) $d_{h-1}r_h < n^2$,
	- (E) the pencil $(f_t : t \in \mathbb{K})$ is equisingular i.e. f_t are irreducible and $G(f_t)$ $G(f)$ *for* $t \in \mathbb{K}$ *.*

Proof. See [GB-P2004], Section 5, p. 124.

Let $F(x, y) = y^n + a_1(x)y^{n-1} + \cdots + a_n(x) \in \mathbb{K}[x, y]$ be a polynomial of degree $n > 1$, irreducible in $\mathbb{K}[x, y]$. Assume, after possibly a change of variables, that deg $a_k(x) < k$ for $k = 1, ..., n$. Hence $F_0(x_0, y_0) = y_0^n + x_0 a_1(\frac{1}{x_0}) y_0^{n-1} + \cdots$ $x_0^n a_n(\frac{1}{x_0}) \in \mathbb{K}[x_0, y_0]$ is a distinguished polynomial. In what follows we assume that the polynomial $F(x, y)$ is *irreducible at infinity* i.e. $F_0(x_0, y_0)$ is irreducible in K[[x_0, y_0]]. Given a polynomial $G(x, y) \in \mathbb{K}[x, y]$, we set

$$
I(F, G) = \dim_{\mathbb{K}} \mathbb{K}[x, y] / (F, G)
$$

and call

 ${I(F, G): G$ runs over all polynomials such that $G \not\equiv 0 \pmod{F}$

the degree semigroup associated with the affine curve $F = 0$.

Theorem 4.3. (Abhyankar-Moh Degree Semigroup Theorem)

Suppose that K *is an algebraically closed field of characteristic zero and keep the notation and assumption introduced above. Then the n-minimal system of generators of the semigroup* $G(F_0)$ *has the AM property, the associated sequence* $(\delta_0, \ldots, \delta_h)$ *is nice and generates the degree semigroup of the affine curve* $F = 0$.

Proof. See [R].

For more information the reader is referred to [B-GB-P] and [RL].

LITERATURA

- [A-M] S. S. Abhyankar, T. T. Moh, *Embeddings of the line in the plane*, J. reine angew. Math. 276 (1975), 148–166.
- [An] G. Angerm¨uller, *Die Wertehalbgruppe einer ebenen irreduziblen algebroiden Kurve*, Math. Z. 153 (1977), 267–282.
- [B-GB-P] R. D. Barrolleta, E. R. García Barroso, A. Płoski, *On the Abhyankar-Moh inequality*, arXiv: 1407.0176
- [GB-P2015] E. R. García Barroso, A. Płoski, *An approach to plane algebroid branches*, Rev. Mat. Complut. (2015) 28, 227–252.
- [GB-P2012] E. R. García Barroso, A. Płoski, *An approach to plane algebroid branches*, arXiv: 1208.0913, 4 Aug 2012
- [GB-P2004] E. R. Garc´ıa Barroso, A. Płoski, *Pinceaux de courbes planes et invariants polaires*, Ann. Pol. Math. 82 (2004), 113–128.
- [P1] A. Płoski, *Introduction to the local theory of plane algebraic curves*, in Analytic and algebraic geometry Łódź University Press 2013, 115-134 (eds T. Krasiński and St. Spodzieja)
- [P2] A. Płoski, *Plane algebroid branches after R. Ap´ery*, Materiały na XXXV Konferencje z Geometrii Analitycznej i Algebraicznej, Łódź 2014, 35–44. *^ι*
- [RL] A. Reguera López, *Semigroups and clusters at infinity*, Algebraic geometry and singularities (La Rábida, 1991), 339–374, Progr. Math., 134, Birkhäuser, Basel, 1996.
- [R] P. Russel, *Hamburger-Noether expansions and approximate roots of polynomials*, Manuscripta Math. 31 (1980), no. 1-3, 25–95.

PÓŁGRUPY NUMERYCZNE

*P***ółgrupa numeryczna nazywamy półgrupę liczb naturalnych** $G \subset \mathbb{N}$ **taka, że** NWP(*G*) = 1. Takie półgrupy wystepuja w teorii osobliwości. W tym artykule opisujemy za Angerm¨ullerem półgrupy stowarzyszone z osobliwościami krzywych płaskich a następnie opisujemy półgrupy, których ciągi generatorów spełniają nierówność Abhyankara-Moha, podstawową w teorii krzywych płaskich o jednej gałęzi w nieskończoności.

Department of Mathematics Kielce University of Technology AL. 1000 L PP 7 25-314 Kielce, Poland e-mail: matap@tu.kielce.pl

Łódź, 5 – 9 stycznia 2015 r.

48