motivation homogeneous ideals

Waldschmidt constants

Tomasz Szemberg Pedagogical University of Cracow

XXXVIII Conference and Workshop on analytic and algebraic geometry Łódź, January 10, 2017

Schneider-Lang Theorem in one variable

Theorem

Let f_1, \ldots, f_k be meromorphic functions in \mathbb{C} with f_1, f_2 algebraically independent. Let \mathbb{K} be a number field. Assume that for all $j = 1, \ldots, k$

$$f'_j \in \mathbb{K}[f_1,\ldots,f_k].$$

Then the set

$$\mathcal{S} = \{z \in \mathbb{C} \, : z ext{ is not a pole of } f_j, f_j(z) \in \mathbb{K}, j = 1, \dots, k\}$$

・ 回 と ・ ヨ と ・ ヨ と

æ

is finite.

Schneider-Lang Theorem in one variable

Theorem

Let f_1, \ldots, f_k be meromorphic functions in \mathbb{C} with f_1, f_2 algebraically independent. Let \mathbb{K} be a number field. Assume that for all $j = 1, \ldots, k$

$$f'_j \in \mathbb{K}[f_1,\ldots,f_k].$$

Then the set

$$\mathcal{S} = \{z \in \mathbb{C} \, : z ext{ is not a pole of } f_j, f_j(z) \in \mathbb{K}, j = 1, \dots, k\}$$

<ロ> (日) (日) (日) (日) (日)

æ

is finite.

Corollary (Hermite-Lindemann)

For $\omega \in \mathbb{C}^*$ at least one of the numbers ω , $\exp(\omega)$ is transcendental.

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

Schwarz Lemma in one variable

Theorem

Let f be an analytic function in a disc $\{|z| \le R\} \subset \mathbb{C}$ with at least N zeroes in a disc $\{|z| \le r\}$ with r < R. Then

$$|f|_r \le \left(\frac{3r}{R}\right)^N |f|_R,$$

where

$$|f|_{\gamma} = \sup_{|z| \leq \gamma} |f(z)|.$$

<ロ> <同> <同> <同> < 同>

æ

- ∢ ≣ ▶

Schneider-Lang Theorem in several variables

Theorem (Bombieri 1970)

Let f_1, \ldots, f_k be meromorphic functions in \mathbb{C}^n with f_1, \ldots, f_{n+1} algebraically independent. Let \mathbb{K} be a number field. Assume that for all $i = 1, \ldots, n, j = 1, \ldots, k$

$$\frac{\partial}{\partial z_i} f_j \in \mathbb{K}[f_1,\ldots,f_k].$$

Then the set

 $S = \{z \in \mathbb{C}^n : z \text{ is not a pole of } f_j, f_j(z) \in \mathbb{K}, j = 1, \dots, k\}$

イロト イヨト イヨト イヨト

is contained in an algebraic hypersurface.

Hörmander version of Schwarz lemma in several variables

Theorem

Let $S \subset \mathbb{C}^n$ be a finite set. Let m be a positive integer. There exists M(m) > 0 such that there exists r > 0 such that for R > r and a function f analytic in the ball $\{|z| \leq R\} \subset \mathbb{C}^n$ vanishing with multiplicity $\geq m$ at each point of S

$$|f|_r \leq \left(\frac{c(n)\cdot r}{R}\right)^{M(m)}|f|_R,$$

where c(n) is a constant depending only on n.

Hörmander version of Schwarz lemma in several variables

Theorem

Let $S \subset \mathbb{C}^n$ be a finite set. Let m be a positive integer. There exists M(m) > 0 such that there exists r > 0 such that for R > r and a function f analytic in the ball $\{|z| \leq R\} \subset \mathbb{C}^n$ vanishing with multiplicity $\geq m$ at each point of S

$$|f|_r \leq \left(\frac{c(n)\cdot r}{R}\right)^{M(m)}|f|_R,$$

where c(n) is a constant depending only on n.

Problem

Make the statement effective. In particular: what is the maximal value of M(m)?

・ロト ・回ト ・ヨト ・ヨト

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

motivation homogeneous ideals

Waldschmidt constant should be Moreau constant

Problem

Make the statement effective. In particular: what is the maximal value of M?

æ

|田・ (日) (日)

Waldschmidt constant should be Moreau constant

Problem

Make the statement effective. In particular: what is the maximal value of M?

Theorem (Moreau)

Let $S \subset \mathbb{C}^n$ be a finite set. Let m be a positive integer. There exists r > 0 such that for R > r and a function f analytic in the ball $\{|z| \leq R\} \subset \mathbb{C}^n$ vanishing with multiplicity $\geq m$ at each point of S

$$|f|_r \leq \left(\frac{\exp(n)\cdot r}{R}\right)^{\alpha(mS)}|f|_R,$$

マロト イヨト イヨト

where $\alpha(mS)$ is the initial degree of $I_S^{(m)}$.

Waldschmidt constant should be Moreau constant

Problem

Make the statement effective. In particular: what is the maximal value of M?

Theorem (Moreau)

Let $S \subset \mathbb{C}^n$ be a finite set. Let m be a positive integer. There exists r > 0 such that for R > r and a function f analytic in the ball $\{|z| \leq R\} \subset \mathbb{C}^n$ vanishing with multiplicity $\geq m$ at each point of S

$$|f|_r \leq \left(\frac{\exp(n)\cdot r}{R}\right)^{\alpha(mS)}|f|_R,$$

where $\alpha(mS)$ is the initial degree of $I_S^{(m)}$.

Remark

The constant $\alpha(mS)$ is optimal.

Tomasz Szemberg Pedagogical University of Cracow

Symbolic powers

Definition

Let \mathbb{K} be a field and let $R = \mathbb{K}[x_0, \dots, x_n]$ be the ring of polynomials. For a homogeneous ideal $0 \neq I \subsetneq R$ its *m*-th symbolic power is

 $I^{(m)} = \bigcap_{P \in \operatorname{Ass}(I)} (I^m R_P \cap R).$

イロン イ部ン イヨン イヨン 三日

Symbolic powers

Definition

Let \mathbb{K} be a field and let $R = \mathbb{K}[x_0, \dots, x_n]$ be the ring of polynomials. For a homogeneous ideal $0 \neq I \subsetneq R$ its *m*-th symbolic power is

$$I^{(m)} = \bigcap_{P \in \mathrm{Ass}(I)} (I^m R_P \cap R).$$

Theorem (Zariski-Nagata)

Let $X \subset \mathbb{P}^n(\mathbb{K})$ be a projective variety (in particular reduced). Then $I(X)^{(m)}$ is generated by all forms which vanish along X to order at least m.

イロン 不同と 不同と 不同と

Symbolic powers of ideals of points

Let
$$Z = \{P_1, \dots, P_s\}$$
 be a finite set of points in $\mathbb{P}^n(\mathbb{K})$. Then
 $I(Z) = I(P_1) \cap \ldots \cap I(P_s)$
and

$$I(Z)^{(m)} = I(P_1)^m \cap \ldots \cap I(P_s)^m$$

イロン イヨン イヨン イヨン

æ

for all $m \geq 1$.

motivation homogeneous ideals

The initial degree and the Waldschmidt constant

Definition

For a graded ideal I its *initial degree* $\alpha(I)$ is the least number t such that $I_t \neq 0$.

- 4 回 2 - 4 □ 2 - 4 □

æ

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

motivation homogeneous ideals

The initial degree and the Waldschmidt constant

Definition

For a graded ideal *I* its *initial degree* $\alpha(I)$ is the least number *t* such that $I_t \neq 0$. The *Waldschmidt constant* of *I* is the real number

$$\widehat{\alpha}(I) = \inf_{m \ge 1} \frac{\alpha(I^{(m)})}{m}.$$

æ

|田・ (日) (日)

Waldschmidt constants are hard to compute

Conjecture (Nagata)

Let I be a saturated ideal of $s \ge 10$ very general points in $\mathbb{P}^2(\mathbb{C})$. Then

 $\alpha(I^{(m)}) > m\sqrt{s}$

・ 回 と ・ ヨ と ・ ヨ と

3

for all $m \geq 1$.

Waldschmidt constants are hard to compute

Conjecture (Nagata)

Let I be a saturated ideal of $s \ge 10$ very general points in $\mathbb{P}^2(\mathbb{C})$. Then

 $\alpha(I^{(m)}) > m\sqrt{s}$

for all $m \ge 1$. Equivalently

$$\widehat{\alpha}(I) = \sqrt{s}.$$

(4回) (4回) (4回)

æ

Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in $\mathbb{P}^n(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I) + n - 1}{n}$$

<**□** > < ⊇ >

< ≣ >

Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in $\mathbb{P}^n(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I) + n - 1}{n}$$

Conjecture (Demailly)

Let I be a saturated ideal of points in $\mathbb{P}^n(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I^{(m)}) + n - 1}{m + n - 1}$$

- ∢ ≣ ▶

Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in $\mathbb{P}^n(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I) + n - 1}{1 + n - 1}$$

Conjecture (Demailly)

Let I be a saturated ideal of points in $\mathbb{P}^n(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I^{(m)}) + n - 1}{m + n - 1}$$

Remark

The Chudnovsky Conjecture is the m = 1 case of the Demailly Conjecture.

Tomasz Szemberg Pedagogical University of Cracow Waldschmidt constants

Problem

Compare ordinary and symbolic powers of homogeneous ideals.

A ₽

∃ >

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that a) $I^r \subset I^{(m)}$; b) $I^{(m)} \subset I^r$.

→ ∃ >

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that a) $I^r \subset I^{(m)}$; b) $I^{(m)} \subset I^r$.

Proposition

$$I^r \subset I^{(m)} \Leftrightarrow r \geq m.$$

æ

- ∢ ≣ ▶

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that a) $I^r \subset I^{(m)}$; b) $I^{(m)} \subset I^r$.

Proposition

$$I^r \subset I^{(m)} \Leftrightarrow r \geq m.$$

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

If
$$m \ge \operatorname{bight}(I)r$$
, then $I^{(m)} \subset I^r$.

∃ >

motivation homogeneous ideals

Containment and Chudnovsky Conjecture

Theorem (Ein, Lazarsfeld, Smith; Hochster, Huneke)

Let I be a saturated ideal in $\mathbb{K}[x_0, \dots, x_n]$. Then for all $m \ge nr$ $I^{(m)} \subset I^r$.

(本部) (本語) (本語) (語)

Containment and Chudnovsky Conjecture

Theorem (Ein, Lazarsfeld, Smith; Hochster, Huneke)

Let I be a saturated ideal in $\mathbb{K}[x_0,\ldots,x_n].$ Then for all $m\geq nr$

 $I^{(m)} \subset I^r$.

Corollary

Let I be a saturated ideal of points in $\mathbb{P}^{n}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I)}{n}.$$

イロン イ部ン イヨン イヨン 三日

Containment and Chudnovsky Conjecture

Theorem (Ein, Lazarsfeld, Smith; Hochster, Huneke)

Let I be a saturated ideal in $\mathbb{K}[x_0,\ldots,x_n].$ Then for all $m\geq nr$

 $I^{(m)} \subset I^r$.

Corollary

Let I be a saturated ideal of points in $\mathbb{P}^{n}(\mathbb{K})$. Then

$$\widehat{\alpha}(I) \geq \frac{\alpha(I)}{n}.$$

Theorem (Demailly)

In the set up as above

$$\widehat{\alpha}(I) \geq \frac{\alpha(I)(\alpha(I)+1) \cdot \ldots \cdot (\alpha(I)+n-1)}{n! \; \alpha(I)^{n-1}}$$

Tomasz Szemberg Pedagogical University of Cracow

Waldschmidt constants

Definition (Star configuration of points)

We say that $Z \subset \mathbb{P}^N$ is a *star configuration* of degree d (or a d-star for short) if Z consists of **all** intersection points of $d \ge N$ **general** hyperplanes in \mathbb{P}^N . By intersection points we mean the points which belong to exactly N of given d hyperplanes.

A (10) > A (10) > A

Definition (Star configuration of points)

We say that $Z \subset \mathbb{P}^N$ is a *star configuration* of degree d (or a d-star for short) if Z consists of **all** intersection points of $d \ge N$ **general** hyperplanes in \mathbb{P}^N . By intersection points we mean the points which belong to exactly N of given d hyperplanes.

Example (Bocci, Harbourne)

For points in the star configuration in \mathbb{P}^n , there is the equality in the Chudnovsky Conjecture.

イロト イヨト イヨト イヨト

Squarefree monomial ideals

Theorem (Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel,
Seceleanu, Van Tuyl, Vu 2015)
Let I be a squarefree monomial ideal with
$$\operatorname{bight}(I) = e$$
. Then
 $\widehat{\alpha}(I) \geq \frac{\alpha(I) + e - 1}{e}$.

・ロト ・回ト ・ヨト ・ヨト

э

More evidence for the Chudnovsky Conjecture

Theorem (Esnault – Viehweg 1983)

Let I be a radical ideal of a finite set of points in \mathbb{P}^n with $n \ge 2$. Let $k \le m$ be two integers. Then

$$\frac{\alpha(I^{(k)})+1}{k+n-1} \leq \frac{\alpha(I^{(m)})}{m},$$

in particular

$$\frac{\alpha(I^{(k)})+1}{k+n-1}\leq \widehat{\alpha}(I).$$

More evidence for the Chudnovsky Conjecture

Theorem (Esnault – Viehweg 1983)

Let I be a radical ideal of a finite set of points in \mathbb{P}^n with $n \ge 2$. Let $k \le m$ be two integers. Then

$$\frac{\alpha(I^{(k)})+1}{k+n-1} \leq \frac{\alpha(I^{(m)})}{m},$$

in particular

$$\frac{\alpha(I^{(k)})+1}{k+n-1}\leq \widehat{\alpha}(I).$$

Corollary

In particular

$$\frac{\alpha(I)+1}{n} \leq \widehat{\alpha}(I),$$

so the Chudnovsky Conjecture holds in \mathbb{P}^2 .

Tomasz Szemberg Pedagogical University of Cracow Wald

Waldschmidt constants

General points

Theorem (Dumnicki-Tutaj-Gasińska, Fouli-Manteo-Xie 2016)

The Chudnovsky Conjecture holds for general points in \mathbb{P}^n .

(4回) (4回) (4回)

æ

Theorem (Dumnicki-Tutaj-Gasińska, Fouli-Manteo-Xie 2016)

The Chudnovsky Conjecture holds for general points in \mathbb{P}^n .

Theorem (Malara, Szemberg, Szpond 2017)

The Demilly Conjecture holds for general points in \mathbb{P}^n .

(4回) (4回) (4回)