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Schneider-Lang Theorem in one variable

Theorem

Let f1, . . . , fk be meromorphic functions in C with f1, f2
algebraically independent. Let K be a number field. Assume that
for all j = 1, . . . , k

f ′j ∈ K[f1, . . . , fk ].

Then the set

S = {z ∈ C : z is not a pole of fj , fj(z) ∈ K, j = 1, . . . , k}

is finite.

Corollary (Hermite-Lindemann)

For ω ∈ C∗ at least one of the numbers ω, exp(ω) is
transcendental.
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Schwarz Lemma in one variable

Theorem

Let f be an analytic function in a disc {|z | ≤ R} ⊂ C with at least
N zeroes in a disc {|z | ≤ r} with r < R. Then

|f |r ≤
(

3r

R

)N

|f |R ,

where
|f |γ = sup

|z|≤γ
|f (z)|.
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Schneider-Lang Theorem in several variables

Theorem (Bombieri 1970)

Let f1, . . . , fk be meromorphic functions in Cn with f1, . . . , fn+1

algebraically independent. Let K be a number field. Assume that
for all i = 1, . . . , n, j = 1, . . . , k

∂

∂zi
fj ∈ K[f1, . . . , fk ].

Then the set

S = {z ∈ Cn : z is not a pole of fj , fj(z) ∈ K, j = 1, . . . , k}

is contained in an algebraic hypersurface.
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Hörmander version of Schwarz lemma in several variables

Theorem

Let S ⊂ Cn be a finite set. Let m be a positive integer. There
exists M(m) > 0 such that there exists r > 0 such that for R > r
and a function f analytic in the ball {|z | ≤ R} ⊂ Cn vanishing
with multiplicity ≥ m at each point of S

|f |r ≤
(
c(n) · r

R

)M(m)

|f |R ,

where c(n) is a constant depending only on n.

Problem

Make the statement effective. In particular: what is the maximal
value of M(m)?
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Waldschmidt constant should be Moreau constant

Problem

Make the statement effective. In particular: what is the maximal
value of M?

Theorem (Moreau)

Let S ⊂ Cn be a finite set. Let m be a positive integer. There
exists r > 0 such that for R > r and a function f analytic in the
ball {|z | ≤ R} ⊂ Cn vanishing with multiplicity ≥ m at each point
of S

|f |r ≤
(

exp(n) · r
R

)α(mS)

|f |R ,

where α(mS) is the initial degree of I
(m)
S .

Remark

The constant α(mS) is optimal.
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Symbolic powers

Definition

Let K be a field and let R = K[x0, . . . , xn] be the ring of
polynomials. For a homogeneous ideal 0 6= I ( R its m-th
symbolic power is

I (m) =
⋂

P∈Ass(I )

(ImRP ∩ R) .

Theorem (Zariski-Nagata)

Let X ⊂ Pn(K) be a projective variety (in particular reduced).
Then I (X )(m) is generated by all forms which vanish along X to
order at least m.
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Symbolic powers of ideals of points

Let Z = {P1, . . . ,Ps} be a finite set of points in Pn(K). Then

I (Z ) = I (P1) ∩ . . . ∩ I (Ps)

and
I (Z )(m) = I (P1)m ∩ . . . ∩ I (Ps)m

for all m ≥ 1.
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The initial degree and the Waldschmidt constant

Definition

For a graded ideal I its initial degree α(I ) is the least number t
such that It 6= 0.

The Waldschmidt constant of I is the real number

α̂(I ) = inf
m≥1

α(I (m))

m
.
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Waldschmidt constants are hard to compute

Conjecture (Nagata)

Let I be a saturated ideal of s ≥ 10 very general points in P2(C).
Then

α(I (m)) > m
√
s

for all m ≥ 1.

Equivalently
α̂(I ) =

√
s.
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Chudnovsky and Demailly Conjectures

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in Pn(K). Then

α̂(I ) ≥ α(I ) + n − 1

n
.

Conjecture (Demailly)

Let I be a saturated ideal of points in Pn(K). Then

α̂(I ) ≥ α(I (m)) + n − 1

m + n − 1
.

Remark

The Chudnovsky Conjecture is the m = 1 case of the Demailly
Conjecture.
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The containment problem

Problem

Compare ordinary and symbolic powers of homogeneous ideals.

More precisely, given I determine all pairs (m, r) such that
a) I r ⊂ I (m);
b) I (m) ⊂ I r .

Proposition

I r ⊂ I (m) ⇔ r ≥ m.

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

If m ≥ bight(I )r , then I (m) ⊂ I r .
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Containment and Chudnovsky Conjecture

Theorem (Ein, Lazarsfeld, Smith; Hochster, Huneke)

Let I be a saturated ideal in K[x0, . . . , xn]. Then for all m ≥ nr

I (m) ⊂ I r .

Corollary

Let I be a saturated ideal of points in Pn(K). Then

α̂(I ) ≥ α(I )

n
.

Theorem (Demailly)

In the set up as above

α̂(I ) ≥ α(I )(α(I ) + 1) · . . . · (α(I ) + n − 1)

n! α(I )n−1
.
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Star configurations

Definition (Star configuration of points)

We say that Z ⊂ PN is a star configuration of degree d (or a
d-star for short) if Z consists of all intersection points of d ≥ N
general hyperplanes in PN . By intersection points we mean the
points which belong to exactly N of given d hyperplanes.

Example (Bocci, Harbourne)

For points in the star configuration in Pn, there is the equality in
the Chudnovsky Conjecture.
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Squarefree monomial ideals

Theorem (Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel,
Seceleanu, Van Tuyl, Vu 2015)

Let I be a squarefree monomial ideal with bight(I ) = e. Then

α̂(I ) ≥ α(I ) + e − 1

e
.
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More evidence for the Chudnovsky Conjecture

Theorem (Esnault – Viehweg 1983)

Let I be a radical ideal of a finite set of points in Pn with n ≥ 2.
Let k ≤ m be two integers. Then

α(I (k)) + 1

k + n − 1
≤ α(I (m))

m
,

in particular
α(I (k)) + 1

k + n − 1
≤ α̂(I ).

Corollary

In particular
α(I ) + 1

n
≤ α̂(I ),

so the Chudnovsky Conjecture holds in P2.
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General points

Theorem (Dumnicki-Tutaj-Gasińska, Fouli-Manteo-Xie 2016)

The Chudnovsky Conjecture holds for general points in Pn.

Theorem (Malara, Szemberg, Szpond 2017)

The Demilly Conjecture holds for general points in Pn.
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