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1. Introduction

In singularity theory there are many notions of equivalence of isolated singulari-
ties. For an isolated singularity f0 the problem is which singularities (with respect
to this equivalence) can be obtained from f0 by its deformations. This leads to
the notion of a versal deformation of f0 i.e. such one that any other deforma-
tion of f0 can be "induced" from it – details are in Section 2. In the article we
prove the existence of a versal deformation for one particular case of equivalence
of singularities - biholomorphisms which leave the origin fixed. The reason for this
kind of equivalence stems from the fact that we study some numerical invariants of
singularities which are computed at the origin. The idea of the proof of existence
of a versal deformation is not new but we couldn’t find a direct source of such a
theorem.

The proof is based on the proof of a similar theorem for another kind of equiva-
lence of singularities, given in Ebeling [E]. The general case of various equivalences
can be found in [AGV], [W].

2. Deformations of singularities

Let f0 : (Cn, 0)→ (C, 0) be an isolated singularity. It means f0 is the germ (or a
representant of this germ) of a holomorphic function such that f0(0) = 0,∇f0(0) :=(
∂f
∂z1

, . . . , ∂f∂zn

)
(0) = 0, ∇f0(z) 6= 0 for all z = (z1, . . . , zn) 6= 0 sufficiently close to

0 ∈ Cn.
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A deformation of f0 is the germ (or a representant of this germ) of a holomorphic
function

f = f(z, s) : (Cn × Ck, 0)→ (C, 0)

such that
1. f(z, 0) = f0(z),
2. f(0, s) = 0.
We will treat the deformation f as a holomorphic family (fs) of isolated sin-

gularities because by general theorem (see [GLS], Ch. I, Thm 2.6) fs has a finite
number of critical points in a neighbourhood of 0 for sufficiently small s.

Remark 1. The above deformation is called by some authors an unfolding.

Now we define the isomorphism of deformations over the same space of parame-
ters. Two deformations f : (Cn×Ck, 0)→ (C, 0) and g : (Cn×Ck, 0)→ (C, 0) of f0
are said to be isomorphic if there exists a holomorphic map-germ ψ : (Cn×Ck, 0)→
(Cn, 0) such that

1. ψ(z, 0) = z,
2. ψ(0, s) = 0,
3. g(z, s) = f(ψ(z, s), s).
In other words, there exists a holomorphic family of biholomorphisms ψs of

neighbourhoods of the origin in Cn which send 0 to 0, ψ0 = id, and for which
gs(z) = fs(ψs(z)).

Let f : (Cn × Ck, 0)→ (C, 0) be a deformation of f0 and ϕ : (Cl, 0)→ (Ck, 0) a
holomorphic map-germ. The deformation of f0 induced from f by ϕ is defined by

g(z, s) := f(z, ϕ(s)).

A deformation f : (Cn×Ck, 0)→ (C, 0) of f0 is called versal if any deformation
of f0 is equivalent to one induced from f. It means that for any deformation g :
(Cn × Cl, 0)→ (C, 0) of f0 there exist two holomorphic map-germs

ϕ : (Cl, 0)→ (Ck, 0),

ψ : (Cn × Cl, 0)→ (Cn, 0)

such that
1. ψ(z, 0) = z,
2. ψ(0, s) = 0,
3. g(z, s) = f(ψ(z, s), ϕ(s)).

Remark 2. There is also the notion of universal deformation. It is every versal
deformation for which the dimension l of the space of parameters is minimal.

Let On be the ring of germs of holomorphic functions in n-variables and m ⊂ On
its unique maximal ideal.

Theorem 1. Let f0 : (Cn, 0) → (C, 0) be an isolated singularity. Let g1, . . . , gk ∈
On be representatives of a basis of the C-vector space m/m·(∇f0), where (∇f0)
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denotes the ideal in On generated by the partial derivatives ∂f
∂z1

, . . . , ∂f∂zn and ” · ”
means the multiplication of ideals. Then f : (Cn × Ck, 0)→ (C, 0) defined by

f(z, s) := f0(z) + s1g1(z) + · · ·+ skgk(z)

is a versal deformation of f0.

Remark 3. The C-vector space m/m·(∇f0) has a finite dimension by the Hilbert
Nullstellensatz. Moreover it is easy to prove that

dimC m/m·(∇f0) = dimC (On/(∇f0)) + n− 1 = µ(f0) + n− 1,

where µ(f0) is the Milnor number of f0.

Remark 4. In fact, the deformation in Theorem 1 is universal.

Remark 5. When we consider the isomorphism of deformations without condition
2. then almost the same reasoning gives that the versal deformation is of the form

f(z, s) := f0(z) + s1g1(z) + · · ·+ sµ(f0)gµ(f0)(z),

where g1, . . . , gµ(f0) ∈ On are representatives of a basis of the C-vector space
On/(∇f0).

Remark 6. Now we may explain the reason for which we consider the equivalence
of singularities by imposing on biholomorphisms the condition of leaving the origin
fixed. In our papers [Wa], [BKW] we study the behaviour of the Milnor numbers in
holomorphic families (deformations) of singularities. Since in a deformation of an
isolated singularity the isolated critical point may split in several ones we have to
choose one of them. So it is natural to choose the one at the origin. But it implies
an appropriate notion of the equivalence of singularities.

3. Proof of the theorem

We will prove Theorem 1 in a more general case, not for the deformation given
in the theorem but for deformations satisfying a condition, called infinitesimally
versal deformations. By definition it is a deformation f : (Cn × Ck, 0)→ (C, 0) of
f0 such that the germs

∂f

∂s1

∣∣∣∣
s=0

(z), . . . ,
∂f

∂sk

∣∣∣∣
s=0

(z)

generate (over C) the vector space m/m·(∇f0). Denote these germs by
·
f|1, . . . ,

·
f|k,

respectively. The deformation f in Theorem 1 is obviously infinitesimally versal
because in this case

∂f

∂s1

∣∣∣∣
s=0

(z) = g1(z), . . . ,
∂f

∂sk

∣∣∣∣
s=0

(z) = gk(z).

Theorem 2. Let f0 : (Cn, 0) → (C, 0) be an isolated singularity. Then each
infinitesimally versal deformation is versal.

To prove Theorem 2 we start from the key lemma.
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Lemma 1. Let f0 : (Cn, 0) → (C, 0) be an isolated singularity and f : (Cn ×
Ck, 0)→ (C, 0) an infinitesimally versal deformation of f0. If g : (Cn×Ck×C, 0)→
(C, 0) is a deformation of f which additionally satisfies the condition

(3.1) g(0, s, u) ≡ 0

then g is a deformation of f0 which is isomorphic to one induced from f.

Proof. By assumption g is a deformation of f but it is also a deformation of f0. In
fact

g(z, 0, 0) ≡ f(z, 0) ≡ f0(z),

g(0, s, u) ≡ 0 (by 3.1).

We have to show that there exist two holomorphic map-germs

ϕ : (Ck × C, 0)→ (Ck, 0),

ψ : (Cn × Ck × C, 0)→ (Cn, 0)

such that:
1. ψ(z, 0, 0) ≡ z,
2. ψ(0, s, u) ≡ 0,
3. g(z, s, u) = f(ψ(z, s, u), ϕ(s, u)).
We have relations between partial derivatives of f and g

∂g

∂zi

∣∣∣∣
s=0
u=0

(z) =
∂f0
∂zi

(z), i = 1, . . . , n,

∂g

∂sj

∣∣∣∣
s=0
u=0

(z) =
∂f

∂sj

∣∣∣∣
s=0

(z) =
·
f|j(z), j = 1, . . . , k.

Hence in On+k+1 we have
∂g

∂zi
(z, s, u) =

∂f0
∂zi

(z) + g̃i(z, s, u), g̃i ∈ (s, u)On+k+1,

∂g

∂sj
(z, s, u) =

·
f|j(z) + ˜̃gi(z, s, u), ˜̃gi ∈ (s, u)On+k+1.

By assumption

mn = mn ·
(
∂f0
∂z1

, . . . ,
∂f0
∂zn

)
+ C

·
·f|1 + . . .+ C

·
·f|k

in On. Hence arbitrary element H(z, s, u) ∈ mn+k+1 can be represented in the
form

(3.2) H(z, s, u) =

n∑
i=1

αi(z)
∂g

∂zi
(z, s, u) +

k∑
j=1

aj
∂g

∂sj
(z, s, u) + H̃(z, s, u),

where αi ∈ mn, aj ∈ C, H̃ ∈ (s, u)On+k+1. This implies that the On+k+1-module

M := mn+k+1/(mn(
∂g

∂z1
, . . . ,

∂g

∂zn
))On+k+1
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is finitely generated (by the elements ∂g
∂s1

, . . . , ∂g∂sk , s1, . . . , sk, u) and we may apply
to M the Weierstrass Preparation Theorem for Modules (see e.g. [E], Thm 2.4) to
the homomorphism

π∗ : Ok+1 → On+k+1

induced by the projection π : Cn × Ck × C→ Ck × C. According to this theorem
the finitely generated On+k+1-module M is also finitely generated Ok+1-module
(via π∗) if and only if M/π∗(mk+1)M = M/(s, u)M is finitely generated over
Ok+1/mk+1

∼= C. By (3.2) the last condition is satisfied because the classes of
elements ∂g

∂s1
, . . . , ∂g∂sk generate M/(s, u)M over C. Hence M is finitely generated

Ok+1-module and moreover the classes of ∂g
∂s1

, . . . , ∂g∂sk generateM overOk+1. Thus
arbitrary element H(z, s, u) ∈ mn+k+1 can be represented in the form

(3.3) H(z, s, u) =

n∑
i=1

ξi(z, s, u)
∂g

∂zi
(z, s, u) +

k∑
j=1

ηj(s, u)
∂g

∂sj
(z, s, u),

where ξi ∈ On+k+1, ηj ∈ Ok+1 and ξi(0, s, u) = 0. We apply this to the element
∂g
∂u . It belongs to mn+k+1 because by assumption g(0, 0, u) ≡ 0. So, by (3.3)

∂g

∂u
=

n∑
i=1

ξi(z, s, u)
∂g

∂zi
(z, s, u) +

k∑
j=1

ηj(s, u)
∂g

∂sj
(z, s, u),

where ξi ∈ On+k+1, ηj ∈ Ok+1 and ξi(0, s, u) = 0. Taking representatives of the
germs ξi and ηj we may consider the vector field

Ω(z, s, u) = [ξ1(z, s, u), . . . , ξn(z, s, u), η1(s, u), . . . , ηk(s, u),−1]

in a neighbourhood Ũ of the origin in Cn+k+1. It generates a local one-parameter
group of biholomorphisms in Ũ . In particular there exist a neighbourhood U ⊂ Ũ
of 0 and the unique holomorphic mapping

G : K × U → Cn+k+1, K = {t ∈ C : |t| < ε} – a small disc

such that:
1. for t ∈ K the mapping Gt : U → Gt(U) ⊂ Ũ is a biholomorphism of U on

the image,
2. G0 = idU ,
3. for t, t′ ∈ K, a ∈ U such that t + t′ ∈ K, Gt′(a) ∈ U we have Gt+t′(a) =

Gt(Gt′(a)) (we will not use this fact in the sequel),
4. for (z0, s0, u0) ∈ U and the curve X(z0,s0,u0)(t) := Gt(z0, s0, u0), t ∈ K, we

have
X ′(z0,s0,u0)

(t) = Ω(X(z0,s0,u0)(t)), t ∈ K.
In other words, the curves K 3 t 7→ X(z,s,u)(t) ∈ Cn+k+1 are integral curves of the
vector field Ω with initial condition X(z,s,u)(0) = G0(z, s, u) = (z, s, u).

Shrinking U we may assume that U ⊂ {(z, s, u) : |u| < ε}. For fixed (z0, s0, u0) ∈
U we denote the coordinates of the curve X(z0,s0,u0)(t), t ∈ K, as follows

X(z0,s0,u0)(t) =: (z1(t), . . . , zn(t), s1(t), . . . , sk(t), u(t)).
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By definition of the field Ω we have u(t) = u0 − t and hence

X(z0,s0,u0)(u0) = (z1(u0), . . . , zn(u0), s1(u0), . . . , sk(u0), 0).

Then for any (z, s, u) ∈ U we may define two functions ψ and ϕ by

Gu(z, s, u) = X(z,s,u)(u) =: (ψ(z, s, u), ϕ(s, u), 0)

in neighbourhoods of 0 ∈ Cn+k+1 and 0 ∈ Ck+1, respectively. Precisely, ψ and ϕ
are defined by appropriate projections ψ(z, s, u) = π1,...,n(Gu(z, s, u)) and ϕ(s, u) =
πn+1,...,n+k(Gu(z, s, u)). The function ϕ does not depend on z because the coor-
dinates η1(s, u), . . . , ηk(s, u) of the vector field X also do not depend on z. More-
over, ψ and ϕ are holomorphic because Gu(z, s, u) = G(u, z, s, u) is holomorphic.
They satisfy the required conditions. In fact, since G0(0, 0, 0) = (0, 0, 0) then
ψ(0, 0, 0) = 0 and ϕ(0, 0) = 0. Next, G0(z, 0, 0) = (z, 0, 0). Hence ψ(z, 0, 0) = z.
Notice that

Ω(0, s, u) = [ξ1(0, s, u), . . . , ξn(0, s, u), η1(s, u), . . . , ηk(s, u),−1]

= [0, . . . , 0, η1(s, u), . . . , ηk(s, u),−1].

Hence for integral curves which start at points of the hyperplane z1 = 0, . . . , zn = 0
we have

X(0,s,u)(t) = (0, . . . , 0, s1(t), . . . , sk(t), u− t), t ∈ K,
which gives

Gu(0, s, u) = X(0,s,u)(u) = (0, . . . , 0, s1(u), . . . , sk(u), 0).

This implies ψ(0, s, u) = 0.
At the end let us notice that g is constant on integral curves of Ω. Indeed, for

fixed (z, s, u) ∈ U sufficiently close to 0 we have for arbitrary t ∈ K

(g(X(z,s,u)(t)))
′ =

=
∂g

∂z1
(X(z,s,u)(t)) · ξ1(X(z,s,u)(t)) + · · ·+ ∂g

∂zn
(X(z,s,u)(t)) · ξn(X(z,s,u)(t))

+
∂g

∂s1
(X(z,s,u)(t)) · η1(X(z,s,u)(t)) + · · ·+ ∂g

∂sk
(X(z,s,u)(t) · ηk(X(z,s,u)(t))

− ∂g

∂u
(X(z,s,u)(t)) ≡ 0.

Hence g(X(z,s,u)(t)) = const for t ∈ K. Then for (z, s, u) ∈ U sufficiently close to 0

in Cn+k+1

g(z, s, u) = g(X(z,s,u)(0)) = g(X(z,s,u)(u)) = g(Gu(z, s, u))

= g(ψ(z, s, u), ϕ(s, u), 0) = f(ψ(z, s, u), ϕ(s, u)).

This ends the proof of the lemma. �

Now we may give the proof of Theorem 2.
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Proof of Theorem 2. Suppose f : (Cn × Ck, 0)→ (C, 0) is an infinitesimally versal
deformation of f0 and g : (Cn × Cl, 0) → (C, 0) is an arbitrary deformation of f0.
We have to prove that g is isomorphic to a deformation of f0 induced from f. We
consider the following auxiliary deformation h of f0 defined by

h : (Cn × Ck × Cl, 0)→ (C, 0),

h(z, s, u) := f(z, s) + g(z, u)− f0(z)

and a finite sequence of deformations h0, . . . , hl of f0 "connecting" f and g, defined
by

hi : (Cn × Ck × Ci, 0)→ (C, 0),

hi := h|Cn×Ck×(Ci×{0}),

hi(z, s, u1, . . . , ui) := h(z, s, u1, . . . , ui, 0, . . . , 0).

By the definitions of h and hi we easily see that:
1. h0 = f,
2. hl = h,
3. hi is an infinitesimally versal deformation of f0 for each i = 0, . . . , l, because

for every i and j we have
∂hi
∂sj

∣∣∣∣
s=0
u=0

(z) =
∂f

∂sj

∣∣∣∣
s=0

(z).

Each pair of deformations (hi, hi+1) satisfies the assumptions of the lemma.
So, by this lemma each hi+1 is isomorphic to a deformation induced from hi. By
transitivity we obtain that hl is isomorphic to a deformation induced from h0, i.e.
h is isomorphic to a deformation induced from f. But g is induced from h by the
mapping

ϕ : (Cl, 0)→ (Ck × Cl, 0),

ϕ(u) := (0, u).

Hence again by transitivity we obtain that g is isomorphic to a deformation
induced from f. �
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O pewnej wersalnej deformacji

Streszczenie. W artykule dowodzimy istnienia wersalnej deformacji osobliwości
izolowanej dla szczególnego rodzaju równoważności osobliwości – biholomorfizmów
zachowujących początek układu współrzędnych.
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