The Łojasiewicz exponent of a nondegenerate surface singularity Wykładnik Łojasiewicza niezdegenerowanej osobliwości powierzchni

Tadeusz Krasiński

(joint results with Szymon Brzostowski and Grzegorz Oleksik) University of Łódź

41 Konferencja "Geometria Analityczna i Algebraiczna" 6-10 Stycznia 2020, Łódź

Introduction

Let $f: (C^n, 0) \to (C, 0)$ be an isolated singularity i.e.

Introduction

Let $f: (C^n, 0) \to (C, 0)$ be an isolated singularity i.e.

```
1. f(z) \in \mathbb{C}\{z_1, ..., z_n\},\
```
Introduction

Let $f: (C^n, 0) \to (C, 0)$ be an isolated singularity i.e.

1.
$$
f(z) \in C\{z_1, ..., z_n\},\
$$

2. ∇f : $(C^n, 0) \rightarrow (C^n, 0)$ has an isolated zero at 0.

Important invariant of a singularity.

The best exponent $\lambda \in \mathbb{R}$ (i.e. infimum) such that the following inequality holds (the Łojasiewicz inequality)

$\|\nabla f(\mathbf{z})\| \geq c \, ||\mathbf{z}||^{\lambda}$

in a neighbourhood of the origin in \mathcal{C}^n .

Newton polyhedron(boundary, diagram) $\Gamma(f)$ of a singularity f

Arnold's postulate:

1975-1. Every interesting discrete invariant of a generic singularity with Newton polyhedron is an interesting function of the polyhedron.

The most important example.

The Milnor number of a singularity $-$ the Kushnirenko formula for non-degenerate singularities.

Problem

Give a formula for the Łojasiewicz exponent $\mathcal{L}(f)$ of nondegenerate singularity f in terms of its Newton polyhedron.

The formulas in terms of the Newton diagram

A. Lenarcik (1996) A formula for $L(f)$ in 2 dimensional case (n=2). The singularity depends on two variables $f(x, y)$.

The formulas in terms of the Newton diagram

A. Lenarcik (1996) A formula for $\mathcal{L}(f)$ in 2 dimensional case (n=2). The singularity depends on two variables $f(x, y)$.

$$
\mathcal{L}(f) = \max(\alpha(S) : S \in \Gamma(f) - E_f) - 1
$$

 E_f - exceptional segments of the Newton diagram $\Gamma(f)$.

The formulas in terms of the Newton diagram

Exceptional segment

Oleksik (2010) gave a definition of exceptional faces in 3 dimensional case. This definition may be easily transferred (generalized) to *n*-dimensional case.

Oleksik (2010) gave a definition of exceptional faces in 3 dimensional case. This definition may be easily transfered (generalized) to n-dimensional case.

Oleksik definition: 2-dimensionsal face $S\epsilon \Gamma^2(f)$ is said to be exceptional if S has the form

Exceptional faces

Theorem (Oleksik 2010). If $f: (C^3, 0) \rightarrow (C, 0)$ is a nondegenerate isolated singularity then

$$
\mathcal{L}(f) \le \max\left(\alpha(S) : S \in \Gamma^2(f) - E_f\right) - 1.
$$

The Oleksik result

Theorem (Brzostowski, Krasiński, Oleksik). If f : $(C^3, 0) \rightarrow (C, 0)$ is a non-degenerate isolated singularity then

$$
\mathcal{L}(f) = \max_{S} (\alpha(S) : S \in \Gamma(f) - E_f) - 1.
$$

Theorem (Brzostowski, Krasiński, Oleksik). If f : $(C^3, 0) \rightarrow (C, 0)$ is a non-degenerate isolated singularity then

$$
\mathcal{L}(f) = \max_{S} (\alpha(S) : S \in \Gamma(f) - E_f) - 1.
$$

Notation: $\alpha(f) := \max(\alpha(S) : S \in \Gamma(f) - E_f)$

The inequality

 $\mathcal{L}(f) \leq \alpha(f) - 1$

- the Oleksik result.

The idea of proof

For inverse inequality

$$
\mathcal{L}(f) \ge \alpha(f) - 1
$$

we use known formula for $\mathcal{L}(f)$

$$
\mathcal{L}(f) = \max \frac{\text{ord } \nabla f \circ \varphi}{\text{ord } \varphi}
$$

 $\varphi(t) = (x(t), y(t), z(t))$ - a holomorphic curve.

Let non exceptional face $S\epsilon \Gamma^2(f)$ realize maximum in the definition of $\alpha(f)$. Let this maximum be attained on axis Ox.

Let $(v, u, w) \in N^3$ be the vector perpendicular to S.

Let $(v, u, w) \in N^3$ be the vector perpendicular to S.

1. $v \leq u, v \leq w$, 2. The equation of the plane containing S: $vx + uy + wz = l$, 3. $\alpha(S)$ = \boldsymbol{l} $\boldsymbol{\mathcal{V}}$.

For monomial curve $\varphi(t) = (at^v, bt^u, ct^w)$ with generic coefficients a, b, c ,

$$
\frac{ord\frac{\partial f}{\partial x} \circ \varphi}{ord\varphi} = \alpha(S) - 1 = \alpha(f) - 1
$$

For monomial curve $\varphi(t) = (at^v, bt^u, ct^w)$ with generic coefficients a, b, c ,

$$
\frac{ord\frac{\partial f}{\partial x} \circ \varphi}{ord\varphi} = \alpha(S) - 1 = \alpha(f) - 1
$$

Unfortunately

$$
\frac{ord\frac{\partial f}{\partial y} \circ \varphi}{ord\varphi} \leq \alpha(f) - 1, \quad \frac{ord\frac{\partial f}{\partial z} \circ \varphi}{ord\varphi} \leq \alpha(f) - 1
$$

The problem is to do the remaining partial derivatives $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial y'}$ ∂f ∂Z small enough on the monomial curve φ or on an extension of it $(at^{\nu} + \cdots, bt^{\mu} + \cdots, ct^{\mu} + \cdots).$ The best situation is to find φ such that

$$
\frac{\partial f}{\partial y} \circ \varphi \equiv 0, \qquad \frac{\partial f}{\partial z} \circ \varphi \equiv 0
$$

Unfortunately, it is not always possible.

Unfortunately, it is not always possible.

We study the set

 $V($ ∂f $\frac{\partial f}{\partial y'}$ ∂f $\frac{\partial f}{\partial z}$

Unfortunately, it is not always possible.

We study the set

 $V($ ∂f $\frac{\partial f}{\partial y'}$ ∂f $\frac{\partial f}{\partial z}$

We know

 $dim V($ ∂f $\frac{\partial f}{\partial y'}$ ∂f $\frac{\partial f}{\partial z}$)=1

We should find parametrization with a given orders of components.

We should find parametrization with a given orders of components.

We apply the classic Maurer theorem (1980) on existence of the parametrization with "a given initial orders of components" of analytic space curves :

Theorem. If ∂f $\frac{\partial f}{\partial y'}$ ∂f $\frac{\partial f}{\partial z}$ do not generate any element in $C\{x, y, z\}$ with initial (v, u, w) – part being a monomial then there exists a parametrization of a irreducible component of V (∂f $\frac{\partial f}{\partial y}$, ∂f $\frac{\partial f}{\partial z}$) of the form

$$
(at^{kv}+\cdots,bt^{ku}+\cdots,ct^{kw}+\cdots),
$$

 $abc \neq 0, k \in N$

Condition, in terms of the face S, to fulfill the assumptions of the Maurer Theorem is:

$$
mV(N(\frac{\partial f_S}{\partial y}(1, y, z)), N(\frac{\partial f_S}{\partial z}(1, y, z))) > 0
$$

Mixed volume of Newton polygons of polynomials $\frac{\partial f_S}{\partial x}$ $\frac{\partial^j f}{\partial y^j}(1, y, z)$ and $\frac{\partial f_S}{\partial z}$ $\frac{\partial^j J}{\partial z}$ $(1, y, z)$ is positive.

The idea of proof

The Newton polygon of a polynomial: Example. $2 + yz + y^2 + 5y^3z^2 + y^2z^4$

The idea of proof

The Newton polygon of a polynomial: Example. $2 + yz + y^2 + 5y^3z^2 + y^2z^4$

Mixed volume of Newton polygons of polynomials F , G of two variables

$$
mV(N(F),N(G)) =
$$

 $= vol(N(F) + N(G)) - vol(N(F)) - vol(N(G))$

The idea of proof

The case

$$
mV(N(\frac{\partial f_S}{\partial y}(1, y, z)), N(\frac{\partial f_S}{\partial z}(1, y, z))) = 0
$$

holds if and only if polygons N($\frac{\partial f_{S}}{\partial y}(1,y,z))$ and N($\frac{\partial f_{S}}{\partial z}(1,y,z)$ are parallel segments or one of them is a point.

The idea of proof

The case

$$
mV(N(\frac{\partial f_S}{\partial y}(1, y, z)), N(\frac{\partial f_S}{\partial z}(1, y, z))) = 0
$$

holds if and only if polygons N($\frac{\partial f_S}{\partial y}(1, y, z))$ and N($\frac{\partial f_S}{\partial z}(1, y, z)$) are parallel segments or one of them is a point.

These are particular cases which are consider separately. In each case we find an appropriate parametrization.

In both cases we use the Brzostowski Theorem

Theorem. In the class of non-degenerate isolated singularities the Łojasiewicz exponent depends only on the Newton diagram.

Precisely

If f , g : $(C^n, 0) \rightarrow (C, 0)$ are isolated non-degenerate singularities and $\Gamma(f) = \Gamma(g)$ then $\mathcal{L}(f) = \mathcal{L}(g)$.

By this theorem we may replace the initial singularity with another singularity which has the same Newton diagram but with no points above the Newton diagram.

The idea of proof

The idea of proof

Generalize the result to n-dimensional case.

Thank you.

