MATERIAŁY NA XXXV KONFERENCJĘ Z GEOMETRII ANALITYCZNEJ I ALGEBRAICZNEJ

 $\mathbf{2014}$

Łódź

str. 29

UWAGI O CIĄGU SKOKÓW LICZB MILNORA

Maria Michalska i Justyna Walewska (Łódź)

1. WSTĘP

Rozważać będziemy izolowaną osobliwość niezdegenerowaną dwóch zmiennych

(1)
$$f = \sum_{m\alpha + l\beta \ge lm} a_{\alpha\beta} \ x^{\alpha} y^{\beta}$$

taką, że $a_{l0}a_{0m} \neq 0$ oraz l, m > 2. Przedstawimy początkowe wyrazy ciągu liczb Milnora niezdegenerowanych deformacji f takich, że skok liczb Milnora jest minimalny. Przyjmując oznaczenia z Sekcji 2 poniżej w szczególności pokażemy, że

Twierdzenie 1.1. Dla osobliwości postaci (1) połóżmy d = NWD(l, m). Ciąg niezdegenerowanych skoków liczb Milnora rozpoczyna się od

$$\lambda_1^{\mathrm{nd}}, \underbrace{1, \ldots, 1}_{\max(1, d-1)}.$$

Prezentowane wyniki są rozszerzeniem wyników [1], [2] oraz [3].

2. Preliminaria

Funkcję analityczną $f : (\mathbb{C}^2, 0) \to \mathbb{C}$ nazywamy osobliwością izolowaną, jeśli układ $\nabla f(x, y) = f(x, y) = 0$ ma dokładnie jedno rozwiązanie i jest ono równe 0.

Liczba Milnora osobliwości f to krotność ∇f w zerze i oznaczmy ją $\mu(f)$. Deformacją osobliwości izolowanej $f : (\mathbb{C}^2, 0) \to \mathbb{C}$ nazwiemy funkcję analityczną $F : \mathbb{C}^3 \to \mathbb{C}$ taką, że $F(0, \cdot) = f$ oraz $F(t, \cdot)$ jest osobliwością izolowaną dla dostatecznie małych t. Deformacją niezdegenerowaną osobliwości izolowanej nazwiemy funkcję F spełniającą powyższe warunki taką, że dodatkowo $F(t, \cdot)$ jest niezdegenerowana (w sensie Kouchnirenki, zob. [4]). Wszystkie liczby Milnora deformacji osobliwości izolowanej f można zapisać jako ściśle malejący ciąg (μ_0, \ldots, μ_l) , gdzie $\mu_0 = \mu(f)$. Jest on jednoznacznie określony przez ciąg najlepszych skoków $(\lambda_1, \ldots, \lambda_l)$, gdzie $\lambda_k = \mu_{k-1} - \mu_k$ dla $k = 1, \ldots, l$. Ponadto wszystkie liczby Milnora deformacji niezdegenerowanych również można zapisać jako ściśle malejący ciąg $(\mu_0^{nd}, \ldots, \mu_m^{nd})$ i związać z nim ciąg najlepszych niezdegenerowanych skoków $(\lambda_1^{nd}, \ldots, \lambda_m^{nd})$, gdzie $\lambda_k^{nd} = \mu_{k-1}^{nd} - \mu_k^{nd}$ dla $k = 1, \ldots, m$. Ciągi te mogą być różne, zob. [4] i [5].

Diagramem Newtona zbioru punktów $\mathcal S$ na płaszczyźnie nazywać będziemy otoczkę wypukłą zbioru

$$\bigcup_{P\in\mathcal{S}} \left(P + \mathbb{R}^2_+\right).$$

Diagramem Newtona funkcji analitycznej $f : (\mathbb{C}^2, 0) \to \mathbb{C}$ dwóch zmiennych w otoczeniu 0 będziemy nazywać diagram Newtona zbioru supp *f*. Brzegiem diagramu Newtona funkcji (jak również skończonego zbioru punktów) jest łamana złożona ze skończonej ilości odcinków oraz dwóch półprostych. Bez zmniejszania ogólności diagram Newtona będziemy utożsamiali z tą skończoną rodziną odcinków, gdyż wyznaczają one diagram Newtona w sposób jednoznaczny. Co więcej, diagram Newtona będziemy utożsamiali z dowolną ustaloną niezdegenerowaną osobliwością o danym diagramie.

W dalszej części pracy rozważać będziemy diagramy Newtona Γ , które mają punkty wspólne z obiema osiami. Wówczas *liczbę Newtona* $v(\Gamma)$ definiuje się następująco

(2)
$$v(\Gamma) = 2A - p - q + 1,$$

gdzie A to pole powierzchni wielokąta ograniczonego brzegiem diagramu i osiami współrzędnych, (p, 0) to współrzędne punktu przecięcia diagramu z osią x, zaś (0, q) to współrzędne punktu przecięcia diagramu z osią y.

Kouchnirenko w [4] udowodnił, że liczba Newtona równa jest liczbie Milnora dla osobliwości niezdegenerowanej. Zatem przydać może się wzór Picka.

Fakt 2.1 (Wzór Picka). Jeśli wielokąt na płaszczyźnie ma wierzchołki w punktach kraty \mathbb{Z}^2 , to jego pole wyraża się wzorem

$$\frac{B}{2} + W - 1,$$

gdzie B to ilość punktów kraty leżących na brzegu, zaś W to ilość punktów kraty leżących wewnątrz wielokąta.

Wprowadźmy użyteczne oznaczenia. Niech $\triangle(P,Q)$ oznacza odcinek PQ. Jeśli P = (p,0), Q = (0,q) to dowolne przesunięcie $\triangle(P,Q)$ oznaczamy przez $\triangle(p,q)$ czyli $\triangle(p,q)$ jest przeciw
prostokątną trójkąta prostokątnego o podstawie długości p i wysokości
 q. Ponadto dla $\triangle(p_1,q_1), \ldots, \triangle(p_n,q_n)$ oznaczmy przez

$$(-1)^k \left(\triangle(p_1, q_1) + \dots + \triangle(p_n, q_n) \right)$$

dowolne przesunięcie łamanej będącej sumą odcinków o końcach kolejno w punktach

$$P, P + (-1)^k [p_1, -q_1], \dots, P + (-1)^k \left[\sum_{i=1}^k p_i, -\sum_{i=1}^k q_i\right].$$

Zatem zmiana znaku po prostu zmienia kolejność sumowania odcinków. W dalszej części pracy z kontekstu będzie wynikało, jaki dokładnie jest pierwszy punkt łamanej.

3. Początkowe wyrazy ciągu skoków liczb Milnora

Przez dalszy ciąg pracy niech p i q będą względnie pierwszymi liczbami naturalnymi takimi, że 2 . Z algorytmu Euklidesa wyznaczyć można liczby naturalne <math>a, b takie, że a < p, b < q oraz

$$bp - aq = (-1)^k$$

dla pewnej liczby naturalnej k. Przyjmijmy n = [p/a]tzn. n jest całością z liczby p podzielonej przez a.

Przy powyższych oznaczeniach sformułujemy użyteczną własność.

Stwierdzenie 3.1 (Argument Parkietowy). Rozważmy równoległobok R(p,q)o wierzchołkach (p,0), (p-a,b), (0,q), (a,q-b). Rodzina

$$\mathcal{R}(p,q) = \{ R(p,q) + i \ [a,-b] + j \ [-(p-a),q-b] : \ i,j \in \mathbb{Z} \}$$

pokrywa całą płaszczyznę oraz równoległoboki z tej rodziny mają parami rozłączne wnętrza. Co więcej, krata \mathbb{Z}^2 to dokładnie zbiór wierzchołków równoległoboków należących do tej rodziny.

Dowód: W rzeczy samej, skoro pole równoległoboku R(p,q) na mocy (3) wynosi $pq - [pq - (-1)^k(bp - aq)] = 1$, więc ze wzoru Picka wynika, że $R(p,q) \cap \mathbb{Z}^2$ to dokładnie jego cztery wierzchołki. Reszta jest łatwą konsekwencją tego faktu.

Pokażemy teraz jakie są początkowe wyrazy ciągu liczb Milnora dla osobliwości niezdegenerowanych postaci (1). Przy powyższych oznaczeniach mamy

Twierdzenie 3.2. Dla diagramu $\triangle(p,q)$ ciąg skoków liczb Milnora rozpoczyna się od

$$\underbrace{\frac{1, \dots, 1}{n}}_{n}$$

jeśli a = 1.

jeśli $a \neq 1$ *lub*

Dowód: Oznaczmy diagram jako $\triangle(P,Q)$. Rozważmy przypadek bp - aq = -1. Przyjmijmy

$$P_i = P - i [a, -b]$$

dla i = 1, ..., n. Będziemy rozważali kolejno deformacje o diagramie wyznaczonym przez punkty $P, Q, P_1, ..., P_i$ dla i = 1, ..., n.

Ze wzoru Picka i równości (3) dostajemy, że podwojone pole trójkąta o wierzchołkach P, Q, P_1 wynosi 1. Zatem na mocy równości liczby Milnora i Newtona oraz wzoru (2) różnica liczb Milnora osobliwości o diagramie $\triangle(P,Q)$ i jej deformacji o diagramie $\triangle(P_1,Q) + \triangle(P,P_1)$ wynosi 1.

Załóżmy, że $a \neq 1$. Zauważmy, że b(p-la)-a(q-lb) = -1 oraz $p-la, q-lb \in \mathbb{N}$ dla $1 \leq l \leq n$. Ponadto punkty P, P_1, \ldots, P_n są współliniowe. Zatem diagram dla zbioru P, Q, P_1, \ldots, P_i jest postaci $\triangle(P_i, Q) + \triangle(P, P_i)$ dla $i = 1, \ldots, n$. Stąd podwojone pole różnicy diagramów zbiorów P, Q, P_1, \ldots, P_i i $P, Q, P_1, \ldots, P_{i+1}$ wynosi 1 na mocy wzoru Picka dla $i = 1, \ldots, n-1$. Stąd dostajemy tezę.

Dla a = 1 zauważmy, że n = p. Zatem powyższe własności zachodzą dla wszystkich *i* oprócz ostatniego, bo P_n leży na osi. Analogicznie, jeśli bp - aq = 1 kładziemy $P_i = Q + i[a, -b]$ dla i = 1, ..., n, przy czym w przypadku gdy a = 1 punkt P_n wykluczamy, gdyż leży pod osią x.

Przykład 3.3. Dla p = 41 i q = 73 z algorytmu Euklidesa mamy a = 9, b = 16 oraz n = 4. Ponadto bp - aq = -1, zatem zgodnie z przyjętymi w Sekcji 2 oznaczeniami wybieramy kolejno punkty $P_1 = (32, 16), P_2 = (23, 32), P_3 = (14, 48), P_4 = (5, 64)$. Otrzymujemy wtedy diagram $\Delta(5, 9) + 4\Delta(9, 16)$. Kolejne skoki to 1, 1, 1, 1.

Zauważmy, że w szczególności z Twierdzenia 3.2 wynika, że

Wniosek 3.4. Dla osobliwości postaci (1) jeśli

$$l = (-1)^k \mod m,$$

to ciąg skoków liczb Milnora rozpoczyna się od

$$\underbrace{1, \ldots, 1}_{\min\{l, m\}-1}$$

Dowód: Wystarczy zauważyć, że $l = (-1)^k \mod m$ wtedy i tylko wtedy gdy $nm - l = (-1)^{k+1}$ i zastosować drugą część Twierdzenia 3.2.

Jeśli $bp - aq = (-1)^k$ i $a \neq 1$, to dla liczb naturalnych

$$a_1 = p - na, \quad b_1 = q - nb$$

mamy

$$ab_1 - ba_1 = (-1)^{k+1}$$

oraz $a_1 < a, b_1 < b$. Połóżmy $n_1 = [a/a_1]$. Inaczej, można przyjąć, że a_1, b_1, n_1 są wyznaczone z algorytmu Euklidesa dla liczb a, b. Przy tych oznaczeniach mamy

Wniosek 3.5. Rozważmy diagram $\triangle(p,q)$ taki, że n = 1. Ciąg skoków liczb Milnora rozpoczyna się od

$$\underbrace{\frac{1, \ldots, }{n_1+1}}_{a}$$

jeśli $a_1 = 1$.

jeśli $a_1 \neq 1$ *lub*

Dowód: Wystarczy zauważyć, że jeśli n = 1, to $a, b \neq 1$ (inaczej $p \leq 2$ wbrew założeniu), a_1 to reszta z dzielenia p przez a oraz b_1 to reszta z dzielenia q przez b. Zatem diagram Newtona zbioru P, Q, P_1 jest postaci

1

$$(-1)^k(\triangle(a,b) + \triangle(a_1,b_1)),$$

gdzie P_1 jest punktem jak w Twierdzeniu 3.2. Ponadto równanie $ab_1-ba_1 = (-1)^{k+1}$ ma odwrotny znak niż $bp - aq = (-1)^k$. Zatem można zastosować Twierdzenie 3.2 do $\triangle(a, b)$, gdyż wybór punktów nie zmienia reszty diagramu (dokładniej, leżą na przedłużeniu odcinka QP_1 w przypadku k nieparzystego lub na przedłużeniu PP_1 w przypadku k parzystego). To daje tezę. **Twierdzenie 3.6.** Dla diagramu Newtona $\triangle(mp, mq)$ ciąg niezdegenerowanych skoków liczb Milnora rozpoczyna się od

$$m, \underbrace{1, \ldots, 1}_{m-1}.$$

Dowód: Oznaczmy diagram jako $\triangle(P,Q)$. Rozważmy przypadek bp - aq = -1. Przyjmijmy

$$P_i = P - (i - 1) [p, -q] - [a, -b]$$

dla $i = 1, \ldots, m$. Będziemy rozważali kolejno deformacje o diagramie wyznaczonym przez punkty P, Q, P_1, \ldots, P_i dla $i = 1, \ldots, m$. Zauważmy, że punkty P_1, \ldots, P_m leżą na prostej równoległej do odcinka PQ. Ze wzoru Picka i Argumentu Parkietowego punkt P_1 realizuje skok równy m, który jest najlepszym niezdegenerowanym skokiem, por. [1]. Diagram punktów P, Q, P_1, \ldots, P_i to $\Delta(Q, P_i) + \Delta(P_i, P_1) + \Delta(P, P_1)$. Na mocy Argumentu Parkietowego dla $i = 2, \ldots, m$ jedynymi punktami kraty \mathbb{Z}^2 należącymi do trójkątów o wierzchołkach P_i, P_{i-1}, Q są ich wierzchołki. Zatem diagram punktów $P, Q, P_1, \ldots, P_{i-1}$ różni się od diagramu P, Q, P_1, \ldots, P_i dokładnie o taki trójkąt. Dostajemy więc, że skok wynosi 1 dla każdego $i = 2, \ldots, m$. To daje tezę.

Twierdzenie 3.7. Dla diagramu Newtona $\triangle(p, mp)$ ciąg niezdegenerowanych skoków liczb Milnora rozpoczyna się od

$$p-1, \underbrace{1, \ldots, 1}_{p-1}.$$

Dowód: Oznaczmy diagram jako $\triangle(P,Q)$. Przyjmijmy

$$P_i = (0, mp - 1) + (i - 1)[1, -m]$$

dla $i = 1, \ldots, p$. Będziemy rozważali kolejno deformacje o diagramie wyznaczonym przez punkty P, Q, P_1, \ldots, P_i dla $i = 1, \ldots, p$. Zauważmy, że punkty P_1, \ldots, P_p leżą na prostej równoległej do odcinka PQ. Ze wzoru Picka i Argumentu Parkietowego punkt P_1 realizuje skok równy p - 1, który jest najlepszym niezdegenerowanym skokiem, por. [1]. Diagram punktów P, Q, P_1, \ldots, P_i to

$$\triangle(P_1, P_i) + \triangle(P_i, P) = (i - 1)\triangle(1, m) + \triangle(p - i + 1, (p - i + 1)m - 1).$$

Na mocy Argumentu Parkietowego dla i = 2, ..., p jedynymi punktami kraty \mathbb{Z}^2 należącymi do trójkątów o wierzchołkach P_i, P_{i-1}, P są ich wierzchołki. Ponadto diagram punktów $P, Q, P_1, ..., P_{i-1}$ różni się od diagramu $P, Q, P_1, ..., P_i$ dokładnie o taki trójkąt. Dostajemy więc, że skok wynosi 1 dla każdego i = 2, ..., p. To daje tezę.

Twierdzenie 1.1 wynika teraz łatwo z Twierdzeń 3.2, 3.6, 3.7 oraz Wniosku 3.5. Uzyskujemy w szczególności, że drugi skok liczb Milnora dla osobliwości o diagramie jednoodcinkowym dogodnym jest zawsze równy 1, co zostało pokazane wcześniej w [3].

Oczywiście powyższe rezultaty łatwo się uogólniają do przypadku niedogodnego (to znaczy do wszystkich izolowanych osobliwości semi-quasi-jednorodnych).

LITERATURA

- Justyna Walewska. Jumps of the Milnor numbers in families of non-degenerate and nonconvenient singularities. In Analytic and Algebraic Geometry, Proceedings of Conference on Analytic and Algebraic Geometry. 2013.
- [2] Arnaud Bodin. Jump of Milnor numbers. Bull. Braz. Math. Soc. (N.S.), 38(3):389-396, 2007.
- [3] Justyna Walewska. The second jump of Milnor numbers. Demonstratio Math., 43(2):361–374, 2010.
- [4] A. G. Kouchnirenko. Polyèdres de Newton et nombres de Milnor. Invent. Math., 32(1):1–31, 1976.
- [5] S. Brzostowski and T. Krasiński. The jump of the Milnor number in the X₉ singularity class. Cent. Eur. J. Math. (to appear).

REMARKS ON THE SEQUENCE OF JUMPS OF MILNOR NUMBERS

Summary. Consider a non-degenerated isolated singularity

$$f = \sum_{m\alpha + l\beta \geqslant lm} a_{\alpha\beta} \ x^{\alpha} y^{\beta}$$

such that $a_{l0}a_{0m} \neq 0$ and l, m > 2. We find the initial terms of the sequence of Milnor numbers of non-degenerate deformations of f such that the jump of Milnor number is minimal.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF ŁÓDŹ 90-238 ŁÓDŹ, BANACHA 22 E-MAIL: Maria.Michalska@math.uni.lodz.pl, walewska@math.uni.lodz.pl

Łódź, 6 – 10 stycznia 2014 r.