The Lojasiewicz exponent of the non-degenerate deformations of singularities

Grzegorz Oleksik $(ioint$ results with Szymon Brzostowski and Tadeusz Krasiński)

University of Lodz, Poland

January 12, 2022

There are many versions (variants) of the Lojasiewicz inequality and the Lojasiewicz exponent.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The main common idea (problem) is:

There are many versions (variants) of the Lojasiewicz inequality and the Lojasiewicz exponent.

The main common idea (problem) is:

We have two mappings F and G of various domains, classes, fields, etc. such that

 $V(F) \subset V(G)$

KOD KARD KED KED E YOUN

There are many versions (variants) of the Lojasiewicz inequality and the Lojasiewicz exponent.

The main common idea (problem) is:

We have two mappings F and G of various domains, classes, fields, etc. such that

 $V(F) \subset V(G)$

Find (or prove the existence) the best exponent $\alpha \in \mathbb{R}$ such that the following inequality holds (the Lojasiewicz inequality)

 $|F| \geq C|G|^{\alpha}$

KOD KARD KED KED E YOUN

locally or globally.

Introduction

We are interested in the following local, complex variant:

$$
F = \text{grad } f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right), \quad G = (z_1, \dots, z_n)
$$

where

$$
f:(\mathbb{C}^n,0)\longrightarrow (\mathbb{C},0)
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q

is an isolated complex singularity.

Of course we have

Introduction

We are interested in the following local, complex variant:

$$
F = \text{grad } f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right), \quad G = (z_1, \dots, z_n)
$$

where

$$
f:(\mathbb{C}^n,0)\longrightarrow (\mathbb{C},0)
$$

is an isolated complex singularity.

Of course we have

$$
V(F) = V\Big(\frac{\partial f}{\partial z_1},\ldots,\frac{\partial f}{\partial z_n}\Big) = \{0\} = V(z_1,\ldots,z_n) = V(G)
$$

KOD KARD KED KED E YOUN

and the Lojasiewicz inequality takes the form

Introduction

We are interested in the following local, complex variant:

$$
F = \text{grad } f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right), \quad G = (z_1, \dots, z_n)
$$

where

$$
f:(\mathbb{C}^n,0)\longrightarrow (\mathbb{C},0)
$$

is an isolated complex singularity.

Of course we have

$$
V(F) = V\Big(\frac{\partial f}{\partial z_1},\ldots,\frac{\partial f}{\partial z_n}\Big) = \{0\} = V(z_1,\ldots,z_n) = V(G)
$$

and the Lojasiewicz inequality takes the form

 $|$ grad $f(z)| \ge C |z|^{\alpha}$

Definition

The Lojasiewicz exponent $\mathcal{L}(f)$ of an isolated singularity

 $f: (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$

is the smallest number $\alpha > 0$ such that

 $|\text{grad } f(z)| \ge C |z|^{\alpha}$

in some neighbourhood of $0 \in \mathbb{C}^n$ and for some $C > 0$.

KORKARA SERKER OQO

Example

•
$$
f(z_1, z_2) := z_1^4 - z_2^3
$$
, grad $f = (4z_1^3, -3z_2^2)$

$$
\mathcal{L}(f)=3,
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q Q

Example

•
$$
f(z_1, z_2) := z_1^4 - z_2^3
$$
, grad $f = (4z_1^3, -3z_2^2)$

$$
\mathcal{L}(f) = 3,
$$

•
$$
f(z_1, z_2) := z_2^3 + z_2 z_1^3
$$
, grad $f = (3z_2 z_1^2, 3z_2^2 + z_1^3)$

$$
\mathcal{L}(f) = 3\frac{1}{2}.
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q Q

Theorem (Chang,Lu,Teissier)

Let $f: (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$ be an isolated singularity. Then

 $Suff(f) = [\mathcal{L}(f)] + 1,$

Suff(f) - degree of C^0 -sufficiency of f.

Lojasiewicz Exponent

Theorem (Chang,Lu,Teissier)

Let $f: (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$ be an isolated singularity. Then

 $Suff(f) = [\mathcal{L}(f)] + 1,$

Suff(f) - degree of C^0 -sufficiency of f.

The topology of f is determined by its monomials of order at most $Suff(f)$.

It is the smallest integer r such that: f is topologically equivalent to $f + g$, ord $g \ge r + 1$.

Property (Lejeune-Jalabert, Teissier)

$$
\bullet \ \mathcal{L}(f) \in \mathbb{Q},
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q

Lojasiewicz Exponent

Property (Lejeune-Jalabert, Teissier)

\n- \n
$$
\mathcal{L}(f) \in \mathbb{Q},
$$
\n
\n- \n
$$
\mathcal{L}(f) = \sup\{\frac{\text{ord grad } f(\phi(t))}{\text{ord }\phi(t)} : \phi(t) \in \mathbb{C}\{t\}^n, \phi(0) = 0, \phi \not\equiv 0\},
$$
\n
\n

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q

Lojasiewicz Exponent

Property (Lejeune-Jalabert, Teissier)

\n- $$
\mathcal{L}(f) \in \mathbb{Q}
$$
,
\n- $\mathcal{L}(f) = \sup\{\frac{\text{ord grad } f(\phi(t))}{\text{ord }\phi(t)} : \phi(t) \in \mathbb{C}\{t\}^n, \phi(0) = 0, \phi \not\equiv 0\},\$
\n- $\bigcup_{t \in \mathbb{Z}} \mathcal{L}(f) \big| \geq \mathcal{L}(\mathcal{L}(f))$
\n- $\bigcup_{t \in \mathbb{Z}} \mathcal{L}(f) \big| \geq \mathcal{L}(\mathcal{L}(f))$
\n

 $|\operatorname{grad} f(z)| \geq C|z|^{\mathcal{L}(f)}$ in some neighbourhood of $0 \in \mathbb{C}^n$

Problems

• Find effective formulas for the Lojasiewicz exponent.

Lojasiewicz Exponent

Problems

- **•** Find effective formulas for the Lojasiewicz exponent.
- In which categories is the Lojasiewicz exponent invariant?

Lojasiewicz Exponent

Problems

- **•** Find effective formulas for the Lojasiewicz exponent.
- In which categories is the Lojasiewicz exponent invariant?
- Explain behaviour of the Lojasiewicz exponent in families of singularities.

Formulas

 $n = 2$: exact formula - Chadzyński, García-Barosso, Hà, Krasiński, Kuo-Luo, Lenarcik, Pham, Płoski,

Lojasiewicz Exponent

Formulas

- $n = 2$: exact formula Chadzyński, García-Barosso, Hà, Krasiński, Kuo-Luo, Lenarcik, Pham, Płoski,
- $n = 3$: exact formula in non-degenerate case Brzostowski, Krasiński, Oleksik,

Lojasiewicz Exponent

Formulas

- $n = 2$: exact formula Chadzyński, García-Barosso, Hà, Krasiński, Kuo-Luo, Lenarcik, Pham, Płoski,
- $n = 3$: exact formula in non-degenerate case Brzostowski, Krasiński, Oleksik.
- $n > 2$: only estimation Abderrahmane, Bivià -Ausina, Brzostowski, Chadzyński, Fukui, Krasiński, Lejeune-Jalabert, Lichtin, Oka, Oleksik, Płoski, Teissier

KOD KARD KED KED E YOUN

Lojasiewicz Exponent

Formulas

- $n = 2$: exact formula Chadzyński, García-Barosso, Hà, Krasiński, Kuo-Luo, Lenarcik, Pham, Płoski,
- $n = 3$: exact formula in non-degenerate case Brzostowski, Krasiński, Oleksik,
- $n > 2$: only estimation Abderrahmane, Bivià -Ausina, Brzostowski, Chadzyński, Fukui, Krasiński, Lejeune-Jalabert, Lichtin, Oka, Oleksik, Płoski, Teissier
- Some effective algorithm: Chadzyński and Krasiński ($n = 2$), Płoski, Rodak, Spodzieja ($n \geq 2$).

Invariance

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Lojasiewicz Exponent

Invariance

 \bullet $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).

Lojasiewicz Exponent

Invariance

- \bullet $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- \bullet $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Invariance

- \bullet $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- \bullet $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Conjecture (Teissier)

 $\mathcal{L}(f)$ is a topological invariant.

Lojasiewicz Exponent

Invariance

- \bullet $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- \bullet $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Conjecture (Teissier)

 $\mathcal{L}(f)$ is a topological invariant.

$$
o \, n=2: \, \text{true}
$$

Lojasiewicz Exponent

Invariance

- \bullet $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- \circ $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Conjecture (Teissier)

 $\mathcal{L}(f)$ is a topological invariant.

$$
o \, n=2: \, \text{true}
$$

 $n = 3$: true in weighted-homogeneous class

Lojasiewicz Exponent

Invariance

- \circ $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- \circ $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Conjecture (Teissier)

 $\mathcal{L}(f)$ is a topological invariant.

$$
• n = 2: true
$$

- $n = 3$: true in weighted-homogeneous class
- \bullet $n > 2$: open

Example

,

$$
f_s=x^2+sy^2+y^3,\,s\in\mathbb{C}
$$

Example

,

$$
f_s=x^2+sy^2+y^3,\,s\in\mathbb{C}
$$

$$
\nabla f_0(0)=(2x,3y^2)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . 19 Q Q

Example

,

$$
f_s=x^2+sy^2+y^3,\,s\in\mathbb{C}
$$

$$
\nabla f_0(0)=(2x,3y^2)
$$

$$
\nabla f_s(0)=(2x,2sy+3y^2)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . 19 Q Q

Example

,

$$
f_s = x^2 + sy^2 + y^3, s \in \mathbb{C}
$$

$$
\nabla f_0(0) = (2x, 3y^2)
$$

$$
\nabla f_s(0) = (2x, 2sy + 3y^2)
$$

$$
\mathcal{L}(f_0) = 2 > 1 = \mathcal{L}(f_s)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . 19 Q Q

Example

,

$$
f_s=xy^5+sx^2+x^8, s\in\mathbb{C}
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q Q

Example

,

$$
f_s=xy^5+sx^2+x^8, s\in\mathbb{C}
$$

$$
\nabla f_0(0) = (y^5 + 8x^7, 5xy^4)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Example

,

$$
f_s=xy^5+sx^2+x^8, s\in\mathbb{C}
$$

$$
\nabla f_0(0) = (y^5 + 8x^7, 5xy^4)
$$

$$
\nabla f_{s}(0) = (y^{5} + 2sx + 8x^{7}, 5xy^{4})
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Example

,

$$
f_s=xy^5+sx^2+x^8, s\in\mathbb{C}
$$

$$
\nabla f_0(0) = (y^5 + 8x^7, 5xy^4)
$$

$$
\nabla f_{\mathsf{s}}(0) = (y^5+2\mathsf{s} x+8x^7,5xy^4)
$$

$$
\mathcal{L}(f_0)=7<9=\mathcal{L}(f_s)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

B. Teissier (1977) proved:

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q Q

Semicontinouity

B. Teissier (1977) proved:

Theorem

If f_s is $\mu-$ constant family of isolated singularities (i.e. the Milnor number is constant in this family) then $\mathcal{L}(f_s)$ is semi continuous from below

B. Teissier (1977) proved:

Theorem

If f_s is $\mu-$ constant family of isolated singularities (i.e. the Milnor number is constant in this family) then $\mathcal{L}(f_s)$ is semi continuous from below

Remark

The Teissier's result was generalized by Płoski (2010) to mappings. (instead of a family of gradient mappings we have a family of mappings with constant multiplicity).

B. Teissier (1977) posed also a hypothesis

B. Teissier (1977) posed also a hypothesis

Conjecture

 $\mathcal{L}(f_s)$ is constant in μ −constant family of isolated singularities

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

B. Teissier (1977) posed also a hypothesis

Conjecture

 $\mathcal{L}(f_s)$ is constant in μ −constant family of isolated singularities

Remark

For plane curve singularities ($n = 2$) the conjecture is true Obvious, because $\mu-$ constant family of plane curve singularities is topologically trivial and $\mathcal{L}(f_s)$ is a topological invariant for such singularities.

4 0 > 4 4 + 4 = + 4 = + = + + 0 0 0

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ .. 할 .. 900

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Semicontinouity

Theorem

 $\mathcal{L}(f_s)$ is constant in μ −constant family of **non-degenerate** isolated surface singularities

Semicontinouity

Theorem

 $\mathcal{L}(f_s)$ is constant in μ −constant family of **non-degenerate** isolated **surface** singularities

Surface singularity:

$$
f_{s}(x, y, z): (\mathbb{C}^{3}, 0) \longrightarrow (\mathbb{C}, 0), n = 3
$$

Family of non degenerate isolated singularities. Each f_s is non-degenerate (in the Kushnirenko sense)

The idea of the proof

The main result follows from 3 other results

Theorem

The Kushnirenko result $(1976)(n-$ dimensional). If f is a non-degenerate isolated singularity then

 $\mu(f) = \nu(f),$

where $\nu(f)$ is the Newton number of $f =$ effective, discrete invariant which we read off from the Newton polyhedron of f).

From this we get

$$
\nu(f_{\sf s}) = {\mathit const}
$$

 $\nu(f) = 2S - a - b + 1$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The idea of the proof

Theorem

Brzostowski, Krasiński, Walewska (2019) (3- dimensional). For two surface singularities f and g if the Newton polyhedrons $N(f)$ and $N(g)$ satisfy $N(f) \subset N(g)$ and $\nu(f) = \nu(g)$ then $N(f)$ and $N(g)$ differ in a very explicit way, they differ on some pyramids with basis in coordinate planes and height one).

From this we get $N(f_s)$ and $N(f_0)$ differ in a very explicit way (because always $N(f_0) \subset N(f_s)$)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The idea of the proof

Theorem

Brzostowski, Krasinski, Oleksik (2020 arXiv) (3 dimensional). An effective formula for the Lojasiewicz exponent of a non-degenerate isolated surface singularity f in terms of the Newton polyhedron $N(f)$

$$
\mathcal{L}(f) = \max\{\alpha(S) : S \in \partial N(f) \setminus E(f)\} - 1
$$

where $E(f)$ is the set of exceptional faces of $N(f)$.

From this formula follows $\mathcal{L}(f_s) = \mathcal{L}(f_0)$ (because the difference $N(f_s)$ and $N(f_0)$ does not influence on this formula).

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ ミ │ ◆ 9 Q (º