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Preliminary Main Result Proof

Introduction

There are many versions (variants) of the  Lojasiewicz inequality
and the  Lojasiewicz exponent.
The main common idea (problem) is:

We have two mappings F and G of various domains, classes, fields,
etc. such that

V (F ) ⊂ V (G )

Find (or prove the existence) the best exponent α ∈ R such that
the following inequality holds (the  Lojasiewicz inequality)

|F | ≥ C |G |α

locally or globally.
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Introduction

We are interested in the following local, complex variant:

F = grad f =
( ∂f

∂z1
, . . . ,

∂f

∂zn

)
, G = (z1, . . . , zn)

where
f : (Cn, 0) −→ (C, 0)

is an isolated complex singularity.

Of course we have

V (F ) = V
( ∂f

∂z1
, . . . ,

∂f

∂zn

)
= {0} = V (z1, . . . , zn) = V (G )

and the  Lojasiewicz inequality takes the form

| grad f (z)| ≥ C |z |α
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 Lojasiewicz Exponent

Definition

The  Lojasiewicz exponent L(f ) of an isolated singularity

f : (Cn, 0) −→ (C, 0)

is the smallest number α > 0 such that

|grad f (z)| ≥ C |z |α

in some neighbourhood of 0 ∈ Cn and for some C > 0.



Preliminary Main Result Proof

Lojasiewicz Exponent

Example

f (z1, z2) := z4
1 − z3

2 , grad f = (4z3
1 ,−3z2

2 )

L(f ) = 3,

f (z1, z2) := z3
2 + z2z3

1 , grad f = (3z2z2
1 , 3z2

2 + z3
1 )

L(f ) = 3
1

2
.
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Lojasiewicz Exponent

Theorem (Chang,Lu,Teissier)

Let f : (Cn, 0) −→ (C, 0) be an isolated singularity. Then

Suff (f ) = [L(f )] + 1,

Suff (f ) - degree of C 0-sufficiency of f .

The topology of f is determined by its monomials of order at most
Suff (f ).

It is the smallest integer r such that:
f is topologically equivalent to f + g , ord g ≥ r + 1.
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 Lojasiewicz Exponent

Property (Lejeune-Jalabert, Teissier)

L(f ) ∈ Q,

L(f ) = sup{ord grad f (φ(t))
ordφ(t) : φ(t) ∈ C{t}n, φ(0) = 0, φ 6≡ 0},

|grad f (z)| ≥ C |z |L(f ) in some neighbourhood of 0 ∈ Cn
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Problems

Find effective formulas for the  Lojasiewicz exponent.

In which categories is the  Lojasiewicz exponent invariant?

Explain behaviour of the  Lojasiewicz exponent in families of
singularities.
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Lojasiewicz Exponent

Formulas

n = 2: exact formula - Chadzyński, Garćıa-Barosso,Hà,
Krasiński, Kuo-Luo, Lenarcik, Pham, P loski,

n = 3: exact formula in non-degenerate case - Brzostowski,
Krasiński, Oleksik,

n ≥ 2: only estimation - Abderrahmane, Bivià -Ausina,
Brzostowski, Chadzyński, Fukui, Krasiński, Lejeune-Jalabert,
Lichtin, Oka, Oleksik, P loski, Teissier

Some effective algorithm: Chadzyński and Krasiński (n = 2),
P loski, Rodak, Spodzieja (n ≥ 2).
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Krasiński, Kuo-Luo, Lenarcik, Pham, P loski,

n = 3: exact formula in non-degenerate case - Brzostowski,
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Lojasiewicz Exponent

Invariance

L(f ) is a biholomorphic invariant of singularities (obvious).

L(f ) is a bi-lipschitz invariant of singularities (Bivia-Ausina,
Fukui),

Conjecture (Teissier)

L(f ) is a topological invariant.

n = 2 : true

n = 3 : true in weighted-homogeneous class

n > 2 : open



Preliminary Main Result Proof

Lojasiewicz Exponent

Invariance

L(f ) is a biholomorphic invariant of singularities (obvious).

L(f ) is a bi-lipschitz invariant of singularities (Bivia-Ausina,
Fukui),

Conjecture (Teissier)

L(f ) is a topological invariant.

n = 2 : true

n = 3 : true in weighted-homogeneous class

n > 2 : open



Preliminary Main Result Proof

Lojasiewicz Exponent

Invariance

L(f ) is a biholomorphic invariant of singularities (obvious).

L(f ) is a bi-lipschitz invariant of singularities (Bivia-Ausina,
Fukui),

Conjecture (Teissier)

L(f ) is a topological invariant.

n = 2 : true

n = 3 : true in weighted-homogeneous class

n > 2 : open



Preliminary Main Result Proof

Lojasiewicz Exponent

Invariance

L(f ) is a biholomorphic invariant of singularities (obvious).

L(f ) is a bi-lipschitz invariant of singularities (Bivia-Ausina,
Fukui),

Conjecture (Teissier)

L(f ) is a topological invariant.

n = 2 : true

n = 3 : true in weighted-homogeneous class

n > 2 : open



Preliminary Main Result Proof

Lojasiewicz Exponent

Invariance

L(f ) is a biholomorphic invariant of singularities (obvious).

L(f ) is a bi-lipschitz invariant of singularities (Bivia-Ausina,
Fukui),

Conjecture (Teissier)

L(f ) is a topological invariant.

n = 2 : true

n = 3 : true in weighted-homogeneous class

n > 2 : open



Preliminary Main Result Proof

Lojasiewicz Exponent

Invariance

L(f ) is a biholomorphic invariant of singularities (obvious).

L(f ) is a bi-lipschitz invariant of singularities (Bivia-Ausina,
Fukui),

Conjecture (Teissier)

L(f ) is a topological invariant.

n = 2 : true

n = 3 : true in weighted-homogeneous class

n > 2 : open



Preliminary Main Result Proof

Lojasiewicz Exponent

Invariance

L(f ) is a biholomorphic invariant of singularities (obvious).

L(f ) is a bi-lipschitz invariant of singularities (Bivia-Ausina,
Fukui),

Conjecture (Teissier)

L(f ) is a topological invariant.

n = 2 : true

n = 3 : true in weighted-homogeneous class

n > 2 : open



Preliminary Main Result Proof

Semicontinouity

In general, the  Lojasiewicz exponent has no property of semi
continuity in families of isolated singularities.

Example

fs = x2 + sy2 + y3, s ∈ C

,

∇f0(0) = (2x , 3y2)

∇fs(0) = (2x , 2sy + 3y2)

L(f0) = 2 > 1 = L(fs)
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Semicontinouity

Example

fs = xy5 + sx2 + x8, s ∈ C

,

∇f0(0) = (y5 + 8x7, 5xy4)

∇fs(0) = (y5 + 2sx + 8x7, 5xy4)

L(f0) = 7 < 9 = L(fs)



Preliminary Main Result Proof

Semicontinouity

Example

fs = xy5 + sx2 + x8, s ∈ C

,
∇f0(0) = (y5 + 8x7, 5xy4)

∇fs(0) = (y5 + 2sx + 8x7, 5xy4)

L(f0) = 7 < 9 = L(fs)



Preliminary Main Result Proof

Semicontinouity

Example

fs = xy5 + sx2 + x8, s ∈ C

,
∇f0(0) = (y5 + 8x7, 5xy4)

∇fs(0) = (y5 + 2sx + 8x7, 5xy4)

L(f0) = 7 < 9 = L(fs)



Preliminary Main Result Proof

Semicontinouity

Example

fs = xy5 + sx2 + x8, s ∈ C

,
∇f0(0) = (y5 + 8x7, 5xy4)

∇fs(0) = (y5 + 2sx + 8x7, 5xy4)

L(f0) = 7 < 9 = L(fs)



Preliminary Main Result Proof

Semicontinouity

B. Teissier (1977) proved:

Theorem

If fs is µ−constant family of isolated singularities (i.e. the Milnor
number is constant in this family) then L(fs) is semi continuous
from below

Remark

The Teissier’s result was generalized by P loski (2010) to mappings.
(instead of a family of gradient mappings we have a family of
mappings with constant multiplicity).
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Semicontinouity

B. Teissier (1977) posed also a hypothesis

Conjecture

L(fs) is constant in µ−constant family of isolated singularities

Remark

For plane curve singularities (n = 2) the conjecture is true
Obvious, because µ− constant family of plane curve singularities is
topologically trivial and L(fs) is a topological invariant for such
singularities.
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Semicontinouity

Theorem

L(fs) is constant in µ−constant family of non-degenerate
isolated surface singularities

Surface singularity:

fs(x , y , z) : (C3, 0) −→ (C, 0) , n = 3

Family of non degenerate isolated singularities. Each fs is
non-degenerate (in the Kushnirenko sense)
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The idea of the proof

The main result follows from 3 other results

Theorem

The Kushnirenko result (1976)(n− dimensional). If f is a
non-degenerate isolated singularity then

µ(f ) = ν(f ),

where ν(f ) is the Newton number of f (= effective, discrete
invariant which we read off from the Newton polyhedron of f ).

From this we get
ν(fs) = const
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ν(f ) = 2S − a− b + 1
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The idea of the proof

Theorem

Brzostowski, Krasiński, Walewska (2019) (3- dimensional). For
two surface singularities f and g if the Newton polyhedrons N(f )
and N(g) satisfy N(f ) ⊂ N(g) and ν(f ) = ν(g) then N(f ) and
N(g) differ in a very explicit way, they differ on some pyramids
with basis in coordinate planes and height one).

From this we get N(fs) and N(f0) differ in a very explicit way
(because always N(f0) ⊂ N(fs))
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The idea of the proof

Theorem

Brzostowski, Krasinski, Oleksik (2020 arXiv ) (3 dimensional). An
effective formula for the Lojasiewicz exponent of a non-degenerate
isolated surface singularity f in terms of the Newton polyhedron
N(f )

L(f ) = max{α(S) : S ∈ ∂N(f ) \ E (f )} − 1

where E (f ) is the set of exceptional faces of N(f ).

From this formula follows L(fs) = L(f0) (because the difference
N(fs) and N(f0) does not influence on this formula).
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