Main Result 00000

The Łojasiewicz exponent of the non-degenerate deformations of singularities

Grzegorz Oleksik (joint results with Szymon Brzostowski and Tadeusz Krasiński)

University of Lodz, Poland

January 12, 2022

Preliminary	Main Result	Proof
●00000000	00000	0000000
Introduction		

There are many versions (variants) of the Łojasiewicz inequality and the Łojasiewicz exponent. The main common idea (problem) is:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Preliminary	Main Result	Proof
●00000000	00000	00000000
Introduction		

There are many versions (variants) of the Łojasiewicz inequality and the Łojasiewicz exponent. The main common idea (problem) is:

We have two mappings F and G of various domains, classes, fields, etc. such that

 $V(F) \subset V(G)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

There are many versions (variants) of the Łojasiewicz inequality and the Łojasiewicz exponent. The main common idea (problem) is:

We have two mappings F and G of various domains, classes, fields, etc. such that

 $V(F) \subset V(G)$

Find (or prove the existence) the best exponent $\alpha \in \mathbb{R}$ such that the following inequality holds (the Łojasiewicz inequality)

 $|F| \ge C|G|^{\alpha}$

locally or globally.

Preliminary	Main Result	Proof
0000000		

Introduction

We are interested in the following local, complex variant:

$$F = \operatorname{grad} f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right), \quad G = (z_1, \dots, z_n)$$

where

$$f:(\mathbb{C}^n,0)\longrightarrow(\mathbb{C},0)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣べ⊙

is an isolated complex singularity.

Of course we have

Introduction

We are interested in the following local, complex variant:

$$F = \operatorname{grad} f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right), \quad G = (z_1, \dots, z_n)$$

where

$$f:(\mathbb{C}^n,0)\longrightarrow(\mathbb{C},0)$$

is an isolated complex singularity.

Of course we have

$$V(F) = V\left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right) = \{0\} = V(z_1, \dots, z_n) = V(G)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and the Łojasiewicz inequality takes the form

 Preliminary
 Main Result
 Proof

 00000000
 00000
 00000000

Introduction

We are interested in the following local, complex variant:

$$F = \operatorname{grad} f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right), \quad G = (z_1, \dots, z_n)$$

where

$$f:(\mathbb{C}^n,0)\longrightarrow(\mathbb{C},0)$$

is an isolated complex singularity.

Of course we have

$$V(F) = V\left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right) = \{0\} = V(z_1, \dots, z_n) = V(G)$$

and the Łojasiewicz inequality takes the form

 $|\operatorname{\mathsf{grad}} f(z)| \geq C |z|^lpha$

Definition

The Lojasiewicz exponent $\mathcal{L}(f)$ of an isolated singularity

 $f:(\mathbb{C}^n,0)\longrightarrow(\mathbb{C},0)$

is the smallest number $\alpha > 0$ such that

 $|\operatorname{grad} f(z)| \geq C |z|^{\alpha}$

in some neighbourhood of $0 \in \mathbb{C}^n$ and for some C > 0.

・ロト・日本・日本・日本・日本

Example

•
$$f(z_1, z_2) := z_1^4 - z_2^3$$
, grad $f = (4z_1^3, -3z_2^2)$

$$\mathcal{L}(f)=3,$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ② ◎ ◎

Example

•
$$f(z_1, z_2) := z_1^4 - z_2^3$$
, grad $f = (4z_1^3, -3z_2^2)$
 $\mathcal{L}(f) = 3$,

•
$$f(z_1, z_2) := z_2^3 + z_2 z_1^3$$
, grad $f = (3z_2 z_1^2, 3z_2^2 + z_1^3)$
 $\mathcal{L}(f) = 3\frac{1}{2}.$

・ロト・(四ト・(日下・(日下・(日下)

Theorem (Chang,Lu,Teissier)

Let $f : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$ be an isolated singularity. Then

 $Suff(f) = [\mathcal{L}(f)] + 1,$

Suff(f) - degree of C^0 -sufficiency of f.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lojasiewicz Exponent

Theorem (Chang,Lu,Teissier)

Let $f : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$ be an isolated singularity. Then

 $Suff(f) = [\mathcal{L}(f)] + 1,$

Suff(f) - degree of C^0 -sufficiency of f.

The topology of f is determined by its monomials of order at most Suff(f).

It is the smallest integer r such that: f is topologically equivalent to f + g, ord $g \ge r + 1$. Preliminary 000000000 Main Result 00000 Proof 00000000

Łojasiewicz Exponent

Property (Lejeune-Jalabert, Teissier)

•
$$\mathcal{L}(f) \in \mathbb{Q}$$
,

・ロト ・西ト ・ヨト ・ヨー うへつ

Preliminary 000000000

Łojasiewicz Exponent

Property (Lejeune-Jalabert, Teissier)

•
$$\mathcal{L}(f) \in \mathbb{Q}$$
,
• $\mathcal{L}(f) = \sup\{\frac{\operatorname{ord}\operatorname{grad} f(\phi(t))}{\operatorname{ord} \phi(t)} : \phi(t) \in \mathbb{C}\{t\}^n, \ \phi(0) = 0, \ \phi \not\equiv 0\},$

◆□ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ● 今 ♀ ●

Property (Lejeune-Jalabert, Teissier)

•
$$\mathcal{L}(f) \in \mathbb{Q}$$
,

•
$$\mathcal{L}(f) = \sup\{ \frac{\operatorname{ord} \operatorname{grad} f(\phi(t))}{\operatorname{ord} \phi(t)} \colon \phi(t) \in \mathbb{C}\{t\}^n, \, \phi(0) = 0, \, \phi \not\equiv 0\},$$

• $|\operatorname{grad} f(z)| \geq C|z|^{\mathcal{L}(f)}$ in some neighbourhood of $0 \in \mathbb{C}^n$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ◇◇◇

Preliminary 000000●00

Lojasiewicz Exponent

Problems

• Find effective formulas for the Łojasiewicz exponent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ∽○へ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lojasiewicz Exponent

Problems

- Find effective formulas for the Łojasiewicz exponent.
- In which categories is the Łojasiewicz exponent invariant?

Lojasiewicz Exponent

Problems

- Find effective formulas for the Łojasiewicz exponent.
- In which categories is the Łojasiewicz exponent invariant?
- Explain behaviour of the Łojasiewicz exponent in families of singularities.

Lojasiewicz Exponent

Formulas

 n = 2: exact formula - Chadzyński, García-Barosso, Hà, Krasiński, Kuo-Luo, Lenarcik, Pham, Płoski,

Lojasiewicz Exponent

Formulas

- n = 2: exact formula Chadzyński, García-Barosso, Hà, Krasiński, Kuo-Luo, Lenarcik, Pham, Płoski,
- n = 3: exact formula in non-degenerate case Brzostowski, Krasiński, Oleksik,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lojasiewicz Exponent

Formulas

- n = 2: exact formula Chadzyński, García-Barosso, Hà, Krasiński, Kuo-Luo, Lenarcik, Pham, Płoski,
- n = 3: exact formula in non-degenerate case Brzostowski, Krasiński, Oleksik,
- n ≥ 2: only estimation Abderrahmane, Bivià -Ausina, Brzostowski, Chadzyński, Fukui, Krasiński, Lejeune-Jalabert, Lichtin, Oka, Oleksik, Płoski, Teissier

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lojasiewicz Exponent

Formulas

- n = 2: exact formula Chadzyński, García-Barosso, Hà, Krasiński, Kuo-Luo, Lenarcik, Pham, Płoski,
- n = 3: exact formula in non-degenerate case Brzostowski, Krasiński, Oleksik,
- n ≥ 2: only estimation Abderrahmane, Bivià -Ausina, Brzostowski, Chadzyński, Fukui, Krasiński, Lejeune-Jalabert, Lichtin, Oka, Oleksik, Płoski, Teissier
- Some effective algorithm: Chadzyński and Krasiński (n = 2), Płoski, Rodak, Spodzieja (n ≥ 2).

Invariance

Lojasiewicz Exponent

Invarian<u>ce</u>

• $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).

Lojasiewicz Exponent

Invariance

- $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Invariance

- $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Conjecture (Teissier)

 $\mathcal{L}(f)$ is a topological invariant.

Invarian<u>ce</u>

- $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Conjecture (Teissier)

 $\mathcal{L}(f)$ is a topological invariant.

Lojasiewicz Exponent

Invariance

- $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Conjecture (Teissier)

 $\mathcal{L}(f)$ is a topological invariant.

• n = 3: true in weighted-homogeneous class

Lojasiewicz Exponent

Invariance

- $\mathcal{L}(f)$ is a biholomorphic invariant of singularities (obvious).
- $\mathcal{L}(f)$ is a bi-lipschitz invariant of singularities (Bivia-Ausina, Fukui),

Conjecture (Teissier)

 $\mathcal{L}(f)$ is a topological invariant.

- n = 3: true in weighted-homogeneous class
- *n* > 2 : open

In general, the Łojasiewicz exponent has no property of semi continuity in families of isolated singularities.

Example

,

$$f_s = x^2 + sy^2 + y^3, \, s \in \mathbb{C}$$

In general, the Łojasiewicz exponent has no property of semi continuity in families of isolated singularities.

Example

,

$$f_s = x^2 + sy^2 + y^3, s \in \mathbb{C}$$

$$\nabla f_0(0) = (2x, 3y^2)$$

In general, the Łojasiewicz exponent has no property of semi continuity in families of isolated singularities.

Example

,

$$f_s = x^2 + sy^2 + y^3, s \in \mathbb{C}$$

$$\nabla f_0(0) = (2x, 3y^2)$$

$$\nabla f_s(0) = (2x, 2sy + 3y^2)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

In general, the Łojasiewicz exponent has no property of semi continuity in families of isolated singularities.

Example

,

$$f_s=x^2+sy^2+y^3,\,s\in\mathbb{C}$$

$$\nabla f_0(0) = (2x, 3y^2)$$

$$\nabla f_s(0) = (2x, 2sy + 3y^2)$$

$$\mathcal{L}(f_0) = 2 > 1 = \mathcal{L}(f_s)$$

Example

,

$$f_s = xy^5 + sx^2 + x^8, \ s \in \mathbb{C}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Example

,

$$f_s = xy^5 + sx^2 + x^8, \ s \in \mathbb{C}$$

$$\nabla f_0(0) = (y^5 + 8x^7, 5xy^4)$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ② ◎ ◎

Example

,

$$f_s = xy^5 + sx^2 + x^8, \ s \in \mathbb{C}$$

$$\nabla f_0(0) = (y^5 + 8x^7, 5xy^4)$$

$$\nabla f_s(0) = (y^5 + 2sx + 8x^7, 5xy^4)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 うへぐ

Example

,

$$f_s = xy^5 + sx^2 + x^8, \ s \in \mathbb{C}$$

$$\nabla f_0(0) = (y^5 + 8x^7, 5xy^4)$$

$$\nabla f_s(0) = (y^5 + 2sx + 8x^7, 5xy^4)$$

$$\mathcal{L}(f_0) = 7 < 9 = \mathcal{L}(f_s)$$

・ロト・日本・日本・日本・日本・日本

Semicontinouity	00000	0000000
Preliminary	Main Result	Proof
00000000	00●00	0000000

B. Teissier (1977) proved:

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

B. Teissier (1977) proved:

Theorem

If f_s is μ -constant family of isolated singularities (i.e. the Milnor number is constant in this family) then $\mathcal{L}(f_s)$ is semi continuous from below

B. Teissier (1977) proved:

Theorem

If f_s is μ -constant family of isolated singularities (i.e. the Milnor number is constant in this family) then $\mathcal{L}(f_s)$ is semi continuous from below

Remark

The Teissier's result was generalized by Płoski (2010) to mappings. (instead of a family of gradient mappings we have a family of mappings with constant multiplicity).

Preliminary	Main Result	Proof
	00000	

B. Teissier (1977) posed also a hypothesis

Semicontinouity

B. Teissier (1977) posed also a hypothesis

Conjecture

 $\mathcal{L}(f_s)$ is constant in $\mu-$ constant family of isolated singularities

B. Teissier (1977) posed also a hypothesis

Conjecture

 $\mathcal{L}(f_s)$ is constant in $\mu-$ constant family of isolated singularities

Remark

For plane curve singularities (n = 2) the conjecture is true Obvious, because μ - constant family of plane curve singularities is topologically trivial and $\mathcal{L}(f_s)$ is a topological invariant for such singularities.

Preliminary Main	Result Proof	
000000000000000000000000000000000000000	• 000000	00

◆□ > < 団 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semicontino<u>uity</u>

Theorem

 $\mathcal{L}(f_s)$ is constant in μ -constant family of non-degenerate isolated surface singularities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Semicontinouity

Theorem

 $\mathcal{L}(f_s)$ is constant in μ -constant family of non-degenerate isolated surface singularities

Surface singularity:

$$f_{s}(x, y, z) : (\mathbb{C}^{3}, 0) \longrightarrow (\mathbb{C}, 0), \ n = 3$$

Family of non degenerate isolated singularities. Each f_s is non-degenerate (in the Kushnirenko sense)

The idea of the proof

The main result follows from 3 other results

Theorem

The Kushnirenko result (1976)(n-dimensional). If f is a non-degenerate isolated singularity then

 $\mu(f) = \nu(f),$

where $\nu(f)$ is the Newton number of f (= effective, discrete invariant which we read off from the Newton polyhedron of f).

From this we get

$$\nu(f_s) = const$$

Preliminary	Main Result	Proof
		0000000

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

The idea of the proof

Theorem

Brzostowski, Krasiński, Walewska (2019) (3- dimensional). For two surface singularities f and g if the Newton polyhedrons N(f)and N(g) satisfy $N(f) \subset N(g)$ and $\nu(f) = \nu(g)$ then N(f) and N(g) differ in a very explicit way, they differ on some pyramids with basis in coordinate planes and height one).

From this we get $N(f_s)$ and $N(f_0)$ differ in a very explicit way (because always $N(f_0) \subset N(f_s)$)

00000 00000	00000000

◆□ > < 団 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

000000 00000000000000000000000000000000	Proof
	00000000

◆□ > < 団 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The idea of the proof

Theorem

Brzostowski, Krasinski, Oleksik (2020 arXiv) (3 dimensional). An effective formula for the Lojasiewicz exponent of a non-degenerate isolated surface singularity f in terms of the Newton polyhedron N(f)

$$\mathcal{L}(f) = \max\{lpha(S): S \in \partial N(f) \setminus E(f)\} - 1$$

where E(f) is the set of exceptional faces of N(f).

From this formula follows $\mathcal{L}(f_s) = \mathcal{L}(f_0)$ (because the difference $N(f_s)$ and $N(f_0)$ does not influence on this formula).

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○