On the weighted bounded negativity conjecture for algebraic surfaces

Piotr Pokora Pedagogical University of Cracow

Analytic and Algebaric Geometry Conference Łódź, January 6-10, 2020

The Bounded Negativity Property

Definition

We say that a surface X has the Bounded Negativity Property if there exists a number b(X) such that

$$C^2 \geq -b(X)$$

holds for all reduced and irreducible curves $C \subset X$.

• • = • • = •

The Bounded Negativity Property

Definition

We say that a surface X has the Bounded Negativity Property if there exists a number b(X) such that

$$C^2 \geq -b(X)$$

holds for all reduced and irreducible curves $C \subset X$.

Example

• For \mathbb{P}^2 it suffices to take $b(\mathbb{P}^2) = 0$.

The Bounded Negativity Property

Definition

We say that a surface X has the Bounded Negativity Property if there exists a number b(X) such that

$$C^2 \geq -b(X)$$

holds for all reduced and irreducible curves $C \subset X$.

Example

- For \mathbb{P}^2 it suffices to take $b(\mathbb{P}^2) = 0$.
- For the Hirzebruch surface \mathbb{F}_n , $b(\mathbb{F}_n) = n$ suffices.

The Bounded Negativity Conjecture

Conjecture

Every complex surface has the Bounded Negativity Property.

The Bounded Negativity Conjecture

Conjecture

Every complex surface has the Bounded Negativity Property.

Remark

This conjecture **fails** in positive characteristic!

Weighted BNC

Conjecture (WBNC)

For every smooth projective surface X over the complex numbers, there exists a non-negative integer $b_w \in \mathbb{Z}$ such that $C^2 \ge -b_w(X) \cdot (C.H)^2$ for all integral curves $C \subset X$ and all big and nef line bundles H for which C.H > 0.

Weighted BNC

Conjecture (WBNC)

For every smooth projective surface X over the complex numbers, there exists a non-negative integer $b_w \in \mathbb{Z}$ such that $C^2 \ge -b_w(X) \cdot (C.H)^2$ for all integral curves $C \subset X$ and all big and nef line bundles H for which C.H > 0.

Remark

This problem is really widely open.

(日)

A general remark

Remark

Notice that we are not asking for the self-intersection number of a curve C to be bounded from below, but rather that the weighted self-intersection $C^2/(C.H)^2$ of C be so, hence the adjective "weighted". Put differently, WBNC is asking for a bound on the self-intersection of all integral curves on X that depends on both X and the degree of the curve C with respect of every big and nef line bundle over which the curve is positive.

Main Result

Here we provide bounds for the self-intersection numbers of irreducible and reduced curves on blow-ups of algebraic surfaces at mutually distinct points. The bounds depend on the degree of the curve with respect to an explicitly constructed big and nef line bundle Γ , and in fact it holds for the cone $\operatorname{Nef}(X) + \Gamma$.

イロト イポト イヨト イヨト 三日

Apply the log Bogomolov-Miyaoka-Sakai

Theorem (Orevkov-Zaidenberg '95, Sakai '90)

Let C be a reduced and irreducible curve in \mathbb{P}^2 of degree d having singular points $p_1, ..., p_s$. We denote by m_{p_i} and μ_{p_i} the corresponding multiplicity and the Milnor number of p_i . If the logarithmic Kodaira dimension of $\mathbb{P}^2 \setminus C$ is non-negative, then

$$\sum_{i=1}^{s}\left(1+\frac{1}{2m_{p_i}}\right)\mu_{p_i}\leq d^2-\frac{3}{2}d.$$

Wakabayashi's result

As it was shown by Wakabayashi [4], if $D \subset \mathbb{P}^2$ is an irreducible and reduced curve of degree $d \geq 4$ having $s \geq 1$ singular points, which is not a rational cuspidal curve with one cusp, then the logarithmic Kodaira dimension of $\mathbb{P}^2 \setminus D$ is non-negative.

イロト 不得 トイヨト イヨト 三日

The first result – a baby case

Theorem

Let $\sigma : Y \longrightarrow \mathbb{P}^2$ be the blow-up of \mathbb{P}^2 at $S = \{p_1, \ldots, p_n\}$, where the p_i 's are distinct points of \mathbb{P}^2 , and let C be an irreducible and reduced curve on Y. Then,

$$C^2 \geq -2n(C.L),$$

where L is the pull-back of a line in \mathbb{P}^2 .

Remark

We can do better using Plücker-Teissier formula, and then we get

$$C^2 \geq -n(C.L)$$

Moreover, if the points are very general, then by Ein-Lazarsfeld-Xu lemma we get

 $-C^2 \leq \min\{\operatorname{mult}_{P_i} C \neq 0\}.$

Main Result

Theorem

Let C be an irreducible and reduced curve in a smooth complex projective surface X having singular points $p_1, ..., p_s$. We denote by m_{p_i} and μ_{p_i} the corresponding multiplicities and the Milnor numbers of p_i 's. Assume that the logarithmic Kodaira dimension of $X \setminus C$ is non-negative, then one has

$$\sum_{p\in Sing(C)} \left(2+\frac{1}{m_p}\right) \mu_p \leq 3e(X) - K_X^2 + 2C^2 + K_X.C.$$

A general bound

Let X a smooth projective surface over the complex numbers, and let $\sigma: Y \longrightarrow X$ be the blow-up of X at $S = \{p_1, \ldots, p_n\}$, where the p_i 's are mutually distinct points of X.

Theorem

There exists an ample line bundle $\Delta \in Pic(X)$ (which is of the form $K_X + 3nA$ for suitable chosen A very ample) such that

$$C^2 \ge -\frac{1}{2} (\delta(X) + (\Delta.\overline{C})) - n,$$

for all integral curves $C \subset Y$ such that the logarithmic Kodaira dimension $X \setminus \overline{C}$ is non-negative. Here, $\overline{C} := \sigma(C)$, $\delta(X) := 3e(X) - K_X^2$ is the Miyaoka-Yau number.

Piotr Pokora Pedagogical University of Cra

An important corollary

Theorem

Assume X is a surface of non-negative Kodaira dimension. Then, in the setting above, there exists a big and nef line bundle Γ that bounds negativity, i.e.,

$$C^2 \ge -\frac{1}{2} (\delta(X) + C.\Gamma) - n,$$

for every integral curve $C \subset Y$. In other words, if we define $\deg_{\Gamma} C := (C.\Gamma)$, then

$$C^2 \ge -\left(\frac{1}{2}\delta(X) + n\right) - \frac{1}{2}\deg_{\Gamma} C,$$

i.e., the negativity of C is bounded by a function that depends on X, the number of points we have blown-up, and the Γ -degree of C.

э

イロト イヨト イヨト

Problems:

- How to construct irreducible and reduced curves in the complex projective plane having very low self-intersection numbers?
- Does there exist an irreducible and reduced plane curve having degree 11 and 15 triple intersection points?
- Is there a way to produce families of irreducible and reduced plane curves having a large number of triple / quadruple points?

References

- [1] R. Laface & P. Pokora: Towards the weighted bounded negativity conjecture for blow-ups of algebraic surfaces. Manuscripta Mathematica, Open Access, electronically available.
- [2] S. Orevkov & M. Zaidenberg, On the number of singular points of plane curves. Geometry of Algebraic Varieties, Proc. Conf. Algebraic Geometry, Saitama Univ., March 16–18, 1995, 156–177.
- [3] F. Sakai, Singularities of plane curves. *Geometry of Projective Varieties*. Cetraro 1990, Mediterranean Press.
- [4] I. Wakabayashi, On the logarithmic Kodaira dimension of the complement of a curve in P². Proc. Japan Acad. Ser. A 54: 157 162 (1978).

Last but not least

Thank you for your attention.